Nuprl Lemma : unsat-omega_start
∀n:ℕ. ∀eqs,ineqs:{L:ℤ List| ||L|| = (n + 1) ∈ ℤ}  List.  (unsat(omega_start(eqs;ineqs)) 
⇒ (¬satisfiable(eqs;ineqs)))
Proof
Definitions occuring in Statement : 
omega_start: omega_start(eqs;ineqs)
, 
unsat-int-problem: unsat(p)
, 
satisfiable-integer-problem: satisfiable(eqs;ineqs)
, 
length: ||as||
, 
list: T List
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
satisfiable-integer-problem: satisfiable(eqs;ineqs)
, 
exists: ∃x:A. B[x]
, 
unsat-int-problem: unsat(p)
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
uimplies: b supposing a
, 
omega_start: omega_start(eqs;ineqs)
, 
satisfies-integer-problem: satisfies-integer-problem(eqs;ineqs;xs)
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
or: P ∨ Q
, 
cons: [a / b]
, 
gcd-reduce-eq-constraints: gcd-reduce-eq-constraints(sat;LL)
, 
accumulate_abort: accumulate_abort(x,sofar.F[x; sofar];s;L)
, 
eager-accum: eager-accum(x,a.f[x; a];y;l)
, 
list_ind: list_ind, 
nil: []
, 
it: ⋅
, 
gcd-reduce-ineq-constraints: gcd-reduce-ineq-constraints(sat;LL)
, 
satisfies-int-constraint-problem: xs |= p
, 
cand: A c∧ B
, 
iff: P 
⇐⇒ Q
, 
satisfies-integer-inequality: xs ⋅ as ≥0
, 
nat_plus: ℕ+
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
top: Top
, 
less_than': less_than'(a;b)
, 
true: True
, 
ge: i ≥ j 
, 
listp: A List+
, 
guard: {T}
, 
isl: isl(x)
, 
outl: outl(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bfalse: ff
, 
satisfies-integer-equality: xs ⋅ as =0
Lemmas referenced : 
satisfiable-integer-problem_wf, 
subtype_rel_list, 
list_wf, 
equal-wf-base-T, 
unsat-int-problem_wf, 
omega_start_wf, 
nat_wf, 
set_wf, 
equal_wf, 
length_wf, 
list-cases, 
product_subtype_list, 
l_all_cons, 
list_subtype_base, 
int_subtype_base, 
satisfies-integer-inequality_wf, 
satisfies-gcd-reduce-ineq-constraints, 
decidable__lt, 
false_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
less_than_wf, 
cons_wf, 
nil_wf, 
l_all_nil, 
gcd-reduce-ineq-constraints_wf, 
listp_wf, 
subtype_rel_sets, 
le_antisymmetry_iff, 
add-swap, 
unit_wf2, 
true_wf, 
l_all_wf, 
l_member_wf, 
satisfies-integer-equality_wf, 
satisfies-gcd-reduce-eq-constraints, 
gcd-reduce-eq-constraints_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
sqequalHypSubstitution, 
productElimination, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
voidElimination, 
because_Cache, 
hypothesis, 
introduction, 
extract_by_obid, 
isectElimination, 
applyEquality, 
setEquality, 
intEquality, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
addEquality, 
setElimination, 
rename, 
natural_numberEquality, 
independent_isectElimination, 
lambdaEquality, 
unionElimination, 
promote_hyp, 
hypothesis_subsumption, 
independent_pairFormation, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
voidEquality, 
minusEquality, 
comment, 
unionEquality, 
productEquality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}eqs,ineqs:\{L:\mBbbZ{}  List|  ||L||  =  (n  +  1)\}    List.
    (unsat(omega\_start(eqs;ineqs))  {}\mRightarrow{}  (\mneg{}satisfiable(eqs;ineqs)))
Date html generated:
2017_04_14-AM-09_12_32
Last ObjectModification:
2017_02_27-PM-03_50_24
Theory : omega
Home
Index