Nuprl Lemma : unsat-omega_start

n:ℕ. ∀eqs,ineqs:{L:ℤ List| ||L|| (n 1) ∈ ℤ}  List.  (unsat(omega_start(eqs;ineqs))  satisfiable(eqs;ineqs)))


Proof




Definitions occuring in Statement :  omega_start: omega_start(eqs;ineqs) unsat-int-problem: unsat(p) satisfiable-integer-problem: satisfiable(eqs;ineqs) length: ||as|| list: List nat: all: x:A. B[x] not: ¬A implies:  Q set: {x:A| B[x]}  add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q not: ¬A false: False satisfiable-integer-problem: satisfiable(eqs;ineqs) exists: x:A. B[x] unsat-int-problem: unsat(p) member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B nat: uimplies: supposing a omega_start: omega_start(eqs;ineqs) satisfies-integer-problem: satisfies-integer-problem(eqs;ineqs;xs) and: P ∧ Q so_lambda: λ2x.t[x] so_apply: x[s] or: P ∨ Q cons: [a b] gcd-reduce-eq-constraints: gcd-reduce-eq-constraints(sat;LL) accumulate_abort: accumulate_abort(x,sofar.F[x; sofar];s;L) eager-accum: eager-accum(x,a.f[x; a];y;l) list_ind: list_ind nil: [] it: gcd-reduce-ineq-constraints: gcd-reduce-ineq-constraints(sat;LL) satisfies-int-constraint-problem: xs |= p cand: c∧ B iff: ⇐⇒ Q satisfies-integer-inequality: xs ⋅ as ≥0 nat_plus: + le: A ≤ B decidable: Dec(P) rev_implies:  Q uiff: uiff(P;Q) subtract: m top: Top less_than': less_than'(a;b) true: True ge: i ≥  listp: List+ guard: {T} isl: isl(x) outl: outl(x) assert: b ifthenelse: if then else fi  btrue: tt bfalse: ff satisfies-integer-equality: xs ⋅ as =0
Lemmas referenced :  satisfiable-integer-problem_wf subtype_rel_list list_wf equal-wf-base-T unsat-int-problem_wf omega_start_wf nat_wf set_wf equal_wf length_wf list-cases product_subtype_list l_all_cons list_subtype_base int_subtype_base satisfies-integer-inequality_wf satisfies-gcd-reduce-ineq-constraints decidable__lt false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel less_than_wf cons_wf nil_wf l_all_nil gcd-reduce-ineq-constraints_wf listp_wf subtype_rel_sets le_antisymmetry_iff add-swap unit_wf2 true_wf l_all_wf l_member_wf satisfies-integer-equality_wf satisfies-gcd-reduce-eq-constraints gcd-reduce-eq-constraints_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin sqequalHypSubstitution productElimination dependent_functionElimination hypothesisEquality independent_functionElimination voidElimination because_Cache hypothesis introduction extract_by_obid isectElimination applyEquality setEquality intEquality sqequalRule baseApply closedConclusion baseClosed addEquality setElimination rename natural_numberEquality independent_isectElimination lambdaEquality unionElimination promote_hyp hypothesis_subsumption independent_pairFormation dependent_set_memberEquality equalityTransitivity equalitySymmetry isect_memberEquality voidEquality minusEquality comment unionEquality productEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}eqs,ineqs:\{L:\mBbbZ{}  List|  ||L||  =  (n  +  1)\}    List.
    (unsat(omega\_start(eqs;ineqs))  {}\mRightarrow{}  (\mneg{}satisfiable(eqs;ineqs)))



Date html generated: 2017_04_14-AM-09_12_32
Last ObjectModification: 2017_02_27-PM-03_50_24

Theory : omega


Home Index