Nuprl Lemma : gcd-reduce-ineq-constraints_wf
∀[LL,sat:ℤ List+ List]. (gcd-reduce-ineq-constraints(sat;LL) ∈ ℤ List+ List?)
Proof
Definitions occuring in Statement :
gcd-reduce-ineq-constraints: gcd-reduce-ineq-constraints(sat;LL)
,
listp: A List+
,
list: T List
,
uall: ∀[x:A]. B[x]
,
unit: Unit
,
member: t ∈ T
,
union: left + right
,
int: ℤ
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
gcd-reduce-ineq-constraints: gcd-reduce-ineq-constraints(sat;LL)
,
so_lambda: λ2x y.t[x; y]
,
listp: A List+
,
all: ∀x:A. B[x]
,
or: P ∨ Q
,
nil: []
,
it: ⋅
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
,
false: False
,
and: P ∧ Q
,
cons: [a / b]
,
implies: P
⇒ Q
,
exposed-bfalse: exposed-bfalse
,
bool: 𝔹
,
unit: Unit
,
btrue: tt
,
uiff: uiff(P;Q)
,
uimplies: b supposing a
,
top: Top
,
true: True
,
not: ¬A
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
ifthenelse: if b then t else f fi
,
assert: ↑b
,
rev_implies: P
⇐ Q
,
iff: P
⇐⇒ Q
,
prop: ℙ
,
has-value: (a)↓
,
nat: ℕ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
subtype_rel: A ⊆r B
,
int_nzero: ℤ-o
,
cand: A c∧ B
,
nequal: a ≠ b ∈ T
,
rev_uimplies: rev_uimplies(P;Q)
,
decidable: Dec(P)
,
subtract: n - m
,
le: A ≤ B
,
so_apply: x[s1;s2]
Lemmas referenced :
accumulate_abort_wf,
listp_wf,
list_wf,
unit_wf2,
list-cases,
length_of_nil_lemma,
product_subtype_list,
lt_int_wf,
eqtt_to_assert,
assert_of_lt_int,
istype-top,
istype-void,
it_wf,
eqff_to_assert,
bool_cases_sqequal,
subtype_base_sq,
bool_wf,
bool_subtype_base,
assert-bnot,
iff_weakening_uiff,
assert_wf,
less_than_wf,
istype-less_than,
cons_wf,
cons-listp,
nil_wf,
value-type-has-value,
nat_wf,
set-value-type,
le_wf,
int-value-type,
absval_wf,
gcd-list_wf,
eager_map_cons_lemma,
div_floor_wf,
not-equal-2,
decidable__le,
istype-le,
istype-false,
not-le-2,
less-iff-le,
condition-implies-le,
minus-add,
minus-one-mul,
add-swap,
minus-one-mul-top,
add-associates,
zero-add,
add-commutes,
add_functionality_wrt_le,
le-add-cancel2,
nequal_wf,
divide_wfa,
eager-map_wf,
list-value-type,
list-valueall-type,
set-valueall-type,
length_wf,
int-valueall-type
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
Error :isect_memberFormation_alt,
introduction,
cut,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
closedConclusion,
intEquality,
hypothesis,
because_Cache,
Error :inlEquality_alt,
hypothesisEquality,
Error :universeIsType,
Error :lambdaEquality_alt,
setElimination,
rename,
dependent_functionElimination,
unionElimination,
imageElimination,
productElimination,
voidElimination,
promote_hyp,
hypothesis_subsumption,
natural_numberEquality,
Error :inhabitedIsType,
Error :lambdaFormation_alt,
equalityElimination,
independent_isectElimination,
lessCases,
axiomSqEquality,
Error :isect_memberEquality_alt,
Error :isectIsTypeImplies,
independent_pairFormation,
imageMemberEquality,
baseClosed,
independent_functionElimination,
Error :inrEquality_alt,
equalityTransitivity,
equalitySymmetry,
Error :dependent_pairFormation_alt,
Error :equalityIstype,
instantiate,
cumulativity,
callbyvalueReduce,
applyEquality,
Error :dependent_set_memberEquality_alt,
addEquality,
Error :inlFormation_alt,
Error :inrFormation_alt,
minusEquality,
axiomEquality
Latex:
\mforall{}[LL,sat:\mBbbZ{} List\msupplus{} List]. (gcd-reduce-ineq-constraints(sat;LL) \mmember{} \mBbbZ{} List\msupplus{} List?)
Date html generated:
2019_06_20-PM-00_49_12
Last ObjectModification:
2019_03_06-PM-09_58_36
Theory : omega
Home
Index