Nuprl Lemma : div_floor_wf
∀[a:ℤ]. ∀[n:ℤ-o].  (a ÷↓ n ∈ ℤ)
Proof
Definitions occuring in Statement : 
div_floor: a ÷↓ n
, 
int_nzero: ℤ-o
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
div_floor: a ÷↓ n
, 
int_nzero: ℤ-o
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
top: Top
, 
true: True
, 
squash: ↓T
, 
not: ¬A
, 
false: False
, 
prop: ℙ
, 
has-value: (a)↓
, 
nequal: a ≠ b ∈ T 
, 
guard: {T}
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
less_than_wf, 
value-type-has-value, 
int-value-type, 
less_than_transitivity1, 
le_weakening, 
less_than_irreflexivity, 
equal_wf, 
subtract_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
iff_transitivity, 
assert_wf, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
assert_of_bnot, 
int_nzero_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
because_Cache, 
productElimination, 
independent_isectElimination, 
lessCases, 
axiomSqEquality, 
isect_memberEquality, 
independent_pairFormation, 
voidElimination, 
voidEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_functionElimination, 
callbyvalueReduce, 
intEquality, 
remainderEquality, 
equalitySymmetry, 
dependent_functionElimination, 
equalityTransitivity, 
divideEquality, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
impliesFunctionality, 
axiomEquality
Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n:\mBbbZ{}\msupminus{}\msupzero{}].    (a  \mdiv{}\mdownarrow{}  n  \mmember{}  \mBbbZ{})
Date html generated:
2019_06_20-AM-11_25_38
Last ObjectModification:
2018_08_20-PM-09_28_22
Theory : arithmetic
Home
Index