Nuprl Lemma : unsat-int-problem_wf
∀[p:IntConstraints]. (unsat(p) ∈ ℙ)
Proof
Definitions occuring in Statement :
unsat-int-problem: unsat(p)
,
int-constraint-problem: IntConstraints
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
unsat-int-problem: unsat(p)
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Lemmas referenced :
all_wf,
list_wf,
not_wf,
satisfies-int-constraint-problem_wf,
int-constraint-problem_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
intEquality,
hypothesis,
lambdaEquality,
hypothesisEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry
Latex:
\mforall{}[p:IntConstraints]. (unsat(p) \mmember{} \mBbbP{})
Date html generated:
2016_05_14-AM-07_17_18
Last ObjectModification:
2015_12_26-PM-01_04_48
Theory : omega
Home
Index