Nuprl Lemma : unsat-int-problem_wf
∀[p:IntConstraints]. (unsat(p) ∈ ℙ)
Proof
Definitions occuring in Statement : 
unsat-int-problem: unsat(p)
, 
int-constraint-problem: IntConstraints
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
unsat-int-problem: unsat(p)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
list_wf, 
not_wf, 
satisfies-int-constraint-problem_wf, 
int-constraint-problem_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
hypothesis, 
lambdaEquality, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[p:IntConstraints].  (unsat(p)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_14-AM-07_17_18
Last ObjectModification:
2015_12_26-PM-01_04_48
Theory : omega
Home
Index