Nuprl Lemma : unsat-int-problem_wf

[p:IntConstraints]. (unsat(p) ∈ ℙ)


Proof




Definitions occuring in Statement :  unsat-int-problem: unsat(p) int-constraint-problem: IntConstraints uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T unsat-int-problem: unsat(p) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  all_wf list_wf not_wf satisfies-int-constraint-problem_wf int-constraint-problem_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality hypothesis lambdaEquality hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[p:IntConstraints].  (unsat(p)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-AM-07_17_18
Last ObjectModification: 2015_12_26-PM-01_04_48

Theory : omega


Home Index