Nuprl Lemma : satisfies-int-constraint-problem_wf
∀[p:IntConstraints]. ∀[xs:ℤ List].  (xs |= p ∈ ℙ)
Proof
Definitions occuring in Statement : 
satisfies-int-constraint-problem: xs |= p
, 
int-constraint-problem: IntConstraints
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int-constraint-problem: IntConstraints
, 
tunion: ⋃x:A.B[x]
, 
pi2: snd(t)
, 
satisfies-int-constraint-problem: xs |= p
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_apply: x[s]
Lemmas referenced : 
list_wf, 
int-constraint-problem_wf, 
l_all_wf, 
equal-wf-base-T, 
l_member_wf, 
set_wf, 
satisfies-integer-equality_wf, 
satisfies-integer-inequality_wf, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
intEquality, 
isect_memberEquality, 
hypothesisEquality, 
because_Cache, 
imageElimination, 
productElimination, 
productEquality, 
setEquality, 
lambdaEquality, 
lambdaFormation, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
addEquality, 
setElimination, 
rename, 
natural_numberEquality, 
dependent_set_memberEquality
Latex:
\mforall{}[p:IntConstraints].  \mforall{}[xs:\mBbbZ{}  List].    (xs  |=  p  \mmember{}  \mBbbP{})
Date html generated:
2017_04_14-AM-09_10_31
Last ObjectModification:
2017_02_27-PM-03_47_29
Theory : omega
Home
Index