Nuprl Lemma : satisfies-gcd-reduce-ineq-constraints
∀[n:ℕ+]. ∀[ineqs,sat:{L:ℤ List| ||L|| = n ∈ ℤ}  List]. ∀[xs:{L:ℤ List| ||L|| = n ∈ ℤ} ].
  uiff((∀as∈ineqs.xs ⋅ as ≥0);(↑isl(gcd-reduce-ineq-constraints(sat;ineqs)))
  ∧ (∀as∈outl(gcd-reduce-ineq-constraints(sat;ineqs)).xs ⋅ as ≥0)) 
  supposing (∀as∈sat.xs ⋅ as ≥0) ∧ 0 < ||xs|| ∧ (hd(xs) = 1 ∈ ℤ)
Proof
Definitions occuring in Statement : 
gcd-reduce-ineq-constraints: gcd-reduce-ineq-constraints(sat;LL)
, 
satisfies-integer-inequality: xs ⋅ as ≥0
, 
l_all: (∀x∈L.P[x])
, 
length: ||as||
, 
hd: hd(l)
, 
list: T List
, 
nat_plus: ℕ+
, 
outl: outl(x)
, 
assert: ↑b
, 
isl: isl(x)
, 
less_than: a < b
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
l_all: (∀x∈L.P[x])
, 
all: ∀x:A. B[x]
, 
satisfies-integer-inequality: xs ⋅ as ≥0
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
isl: isl(x)
, 
outl: outl(x)
, 
not: ¬A
, 
false: False
, 
listp: A List+
, 
less_than: a < b
, 
squash: ↓T
, 
cand: A c∧ B
, 
guard: {T}
, 
cons: [a / b]
, 
or: P ∨ Q
, 
less_than': less_than'(a;b)
, 
length: ||as||
, 
list_ind: list_ind, 
nil: []
, 
it: ⋅
, 
sq_type: SQType(T)
, 
top: Top
, 
subtract: n - m
, 
sq_stable: SqStable(P)
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
colength: colength(L)
, 
nat: ℕ
, 
true: True
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
gcd-reduce-ineq-constraints: gcd-reduce-ineq-constraints(sat;LL)
, 
eager-map: eager-map(f;as)
, 
bfalse: ff
, 
decidable: Dec(P)
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
callbyvalueall: callbyvalueall, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
, 
rev_implies: P 
⇐ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
nequal: a ≠ b ∈ T 
, 
int_nzero: ℤ-o
, 
pi1: fst(t)
, 
hd: hd(l)
, 
bnot: ¬bb
, 
unit: Unit
, 
bool: 𝔹
, 
int-vec-mul: a * as
, 
compose: f o g
, 
evalall: evalall(t)
, 
outr: outr(x)
, 
gt: i > j
, 
select: L[n]
, 
l_member: (x ∈ l)
Lemmas referenced : 
assert_witness, 
member-less_than, 
le_witness_for_triv, 
l_all_wf, 
list_wf, 
equal-wf-base, 
list_subtype_base, 
int_subtype_base, 
set_subtype_base, 
less_than_wf, 
satisfies-integer-inequality_wf, 
l_member_wf, 
istype-assert, 
gcd-reduce-ineq-constraints_wf, 
btrue_wf, 
bfalse_wf, 
listp_wf, 
assert_elim, 
btrue_neq_bfalse, 
subtype_rel_list, 
istype-int, 
subtype_rel_sets_simple, 
length_wf, 
less_than_transitivity1, 
le_weakening, 
istype-less_than, 
equal_wf, 
nat_plus_wf, 
product_subtype_list, 
list-cases, 
subtype_base_sq, 
reduce_hd_cons_lemma, 
istype-void, 
length_of_cons_lemma, 
istype-nat, 
le_weakening2, 
zero-add, 
add-swap, 
add-commutes, 
add-associates, 
sq_stable__le, 
spread_cons_lemma, 
le_wf, 
nat_wf, 
subtract-1-ge-0, 
istype-le, 
istype-false, 
colength_wf_list, 
colength-cons-not-zero, 
set_wf, 
ge_wf, 
less_than_irreflexivity, 
nat_properties, 
cons_wf, 
equal-wf-base-T, 
l_all_wf_nil, 
accumulate_abort_nil_lemma, 
length_of_nil_lemma, 
eager_map_nil_lemma, 
istype-true, 
null_nil_lemma, 
null_cons_lemma, 
eager_map_cons_lemma, 
null_wf, 
decidable__assert, 
cons-listp, 
accumulate_abort_cons_lemma, 
one-mul, 
zero-mul, 
mul-distributes-right, 
two-mul, 
add-mul-special, 
subtract_wf, 
le-add-cancel2, 
add-zero, 
add_functionality_wrt_le, 
minus-one-mul-top, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
le_antisymmetry_iff, 
istype-sqequal, 
length_wf_nat, 
non_neg_length, 
nat_plus_properties, 
void-valueall-type, 
int-valueall-type, 
list-valueall-type, 
union-valueall-type, 
valueall-type-has-valueall, 
le-add-cancel, 
less-iff-le, 
mul-commutes, 
minus-zero, 
add-is-int-iff, 
int_dot_nil_left_lemma, 
int_dot_cons_lemma, 
length-singleton, 
nil_wf, 
l_all_cons, 
istype-top, 
evalall-reduce, 
divide_wfa, 
eager-map_wf, 
list-value-type, 
nequal_wf, 
not-le-2, 
decidable__le, 
not-equal-2, 
div_floor_wf, 
int-value-type, 
value-type-has-value, 
not-lt-2, 
decidable__lt, 
gcd-list_wf, 
absval_wf, 
eager-map-is-map, 
map_cons_lemma, 
map_nil_lemma, 
map-length, 
map_wf, 
add_nat_plus, 
gcd-list-property, 
assert_wf, 
iff_weakening_uiff, 
assert-bnot, 
bool_subtype_base, 
bool_wf, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_lt_int, 
eqtt_to_assert, 
lt_int_wf, 
absval_unfold2, 
mul-associates, 
int-vec-mul-mul, 
int-vec-mul_wf, 
int-ineq-constraint-factor-sym, 
cons_one_one, 
map-map, 
trivial_map, 
divide-exact, 
integer-dot-product_wf, 
multiply-is-int-iff, 
true_wf, 
squash_wf, 
decidable__equal_int, 
minus-minus, 
l_all_nil, 
subtype_rel_sets, 
unit_wf2, 
isl_wf, 
and_wf, 
top_wf, 
it_wf, 
accumulate_abort-aborted, 
not-gt-2, 
multiply_nat_wf, 
add_nat_wf, 
l_all_iff, 
select_wf, 
member-gcd-reduce-ineq-constraints, 
int_dot_cons_nil_lemma, 
not_assert_elim, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
independent_pairFormation, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
extract_by_obid, 
isectElimination, 
because_Cache, 
independent_functionElimination, 
hypothesis, 
lambdaEquality_alt, 
dependent_functionElimination, 
hypothesisEquality, 
axiomEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
inhabitedIsType, 
universeIsType, 
setEquality, 
intEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
natural_numberEquality, 
setElimination, 
rename, 
setIsType, 
productIsType, 
lambdaFormation_alt, 
unionElimination, 
equalityIstype, 
dependent_set_memberEquality_alt, 
applyLambdaEquality, 
voidElimination, 
imageElimination, 
sqequalBase, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
hypothesis_subsumption, 
promote_hyp, 
cumulativity, 
instantiate, 
imageMemberEquality, 
intWeakElimination, 
equalityIsType4, 
functionIsType, 
sqleReflexivity, 
callbyvalueReduce, 
multiplyEquality, 
minusEquality, 
addEquality, 
dependent_pairFormation_alt, 
inlEquality_alt, 
voidEquality, 
unionEquality, 
lessCases, 
axiomSqEquality, 
inrFormation_alt, 
inlFormation_alt, 
equalityElimination, 
hyp_replacement, 
Error :memTop, 
lambdaFormation, 
isect_memberEquality, 
lambdaEquality, 
addLevel, 
levelHypothesis, 
dependent_set_memberEquality, 
universeEquality
Latex:
\mforall{}[n:\mBbbN{}\msupplus{}].  \mforall{}[ineqs,sat:\{L:\mBbbZ{}  List|  ||L||  =  n\}    List].  \mforall{}[xs:\{L:\mBbbZ{}  List|  ||L||  =  n\}  ].
    uiff((\mforall{}as\mmember{}ineqs.xs  \mcdot{}  as  \mgeq{}0);(\muparrow{}isl(gcd-reduce-ineq-constraints(sat;ineqs)))
    \mwedge{}  (\mforall{}as\mmember{}outl(gcd-reduce-ineq-constraints(sat;ineqs)).xs  \mcdot{}  as  \mgeq{}0)) 
    supposing  (\mforall{}as\mmember{}sat.xs  \mcdot{}  as  \mgeq{}0)  \mwedge{}  0  <  ||xs||  \mwedge{}  (hd(xs)  =  1)
Date html generated:
2020_05_19-PM-09_39_12
Last ObjectModification:
2020_01_01-AM-10_04_14
Theory : omega
Home
Index