Nuprl Lemma : int-vec-mul-mul
∀[a,b:ℤ]. ∀[as:ℤ List].  (a * b * as ~ a * b * as)
Proof
Definitions occuring in Statement : 
int-vec-mul: a * as, 
list: T List, 
uall: ∀[x:A]. B[x], 
multiply: n * m, 
int: ℤ, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
int-vec-mul: a * as, 
top: Top, 
compose: f o g, 
sq_type: SQType(T), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
guard: {T}, 
subtype_rel: A ⊆r B, 
true: True, 
squash: ↓T, 
prop: ℙ
Lemmas referenced : 
true_wf, 
squash_wf, 
map_wf, 
mul-associates, 
map-map, 
int_subtype_base, 
list_subtype_base, 
list_wf, 
subtype_base_sq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
intEquality, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
sqequalAxiom, 
because_Cache, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
multiplyEquality, 
natural_numberEquality, 
imageElimination, 
functionEquality, 
universeEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[a,b:\mBbbZ{}].  \mforall{}[as:\mBbbZ{}  List].    (a  *  b  *  as  \msim{}  a  *  b  *  as)
 Date html generated: 
2016_05_14-AM-06_56_29
 Last ObjectModification: 
2016_01_14-PM-08_44_32
Theory : omega
Home
Index