Nuprl Lemma : int-ineq-constraint-factor-sym
∀[a:ℤ]. ∀[g:ℕ+]. ∀[xs,L:ℤ List].  uiff(0 ≤ [a / g * L] ⋅ [1 / xs];0 ≤ [a ÷↓ g / L] ⋅ [1 / xs])
Proof
Definitions occuring in Statement : 
int-vec-mul: a * as
, 
integer-dot-product: as ⋅ bs
, 
cons: [a / b]
, 
list: T List
, 
div_floor: a ÷↓ n
, 
nat_plus: ℕ+
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
nat_plus: ℕ+
, 
cand: A c∧ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
subtype_rel: A ⊆r B
, 
int_nzero: ℤ-o
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
nequal: a ≠ b ∈ T 
, 
guard: {T}
, 
top: Top
Lemmas referenced : 
int-ineq-constraint-factor, 
integer-dot-product-comm, 
cons_wf, 
int-vec-mul_wf, 
integer-dot-product_wf, 
less_than'_wf, 
div_floor_wf, 
subtype_rel_sets, 
less_than_wf, 
nequal_wf, 
less_than_transitivity1, 
le_weakening, 
less_than_irreflexivity, 
equal_wf, 
int_dot_cons_lemma, 
le_wf, 
list_wf, 
nat_plus_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_pairFormation, 
productElimination, 
introduction, 
independent_isectElimination, 
promote_hyp, 
sqequalRule, 
intEquality, 
natural_numberEquality, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
voidElimination, 
applyEquality, 
setEquality, 
lambdaFormation, 
independent_functionElimination, 
isect_memberEquality, 
voidEquality, 
axiomEquality
Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[g:\mBbbN{}\msupplus{}].  \mforall{}[xs,L:\mBbbZ{}  List].    uiff(0  \mleq{}  [a  /  g  *  L]  \mcdot{}  [1  /  xs];0  \mleq{}  [a  \mdiv{}\mdownarrow{}  g  /  L]  \mcdot{}  [1  /  xs])
Date html generated:
2016_05_14-AM-06_57_22
Last ObjectModification:
2015_12_26-PM-01_14_01
Theory : omega
Home
Index