Nuprl Lemma : int-ineq-constraint-factor-sym

[a:ℤ]. ∀[g:ℕ+]. ∀[xs,L:ℤ List].  uiff(0 ≤ [a L] ⋅ [1 xs];0 ≤ [a ÷↓ L] ⋅ [1 xs])


Proof




Definitions occuring in Statement :  int-vec-mul: as integer-dot-product: as ⋅ bs cons: [a b] list: List div_floor: a ÷↓ n nat_plus: + uiff: uiff(P;Q) uall: [x:A]. B[x] le: A ≤ B natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a le: A ≤ B nat_plus: + cand: c∧ B not: ¬A implies:  Q false: False subtype_rel: A ⊆B int_nzero: -o so_lambda: λ2x.t[x] so_apply: x[s] prop: all: x:A. B[x] nequal: a ≠ b ∈  guard: {T} top: Top
Lemmas referenced :  int-ineq-constraint-factor integer-dot-product-comm cons_wf int-vec-mul_wf integer-dot-product_wf less_than'_wf div_floor_wf subtype_rel_sets less_than_wf nequal_wf less_than_transitivity1 le_weakening less_than_irreflexivity equal_wf int_dot_cons_lemma le_wf list_wf nat_plus_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_pairFormation productElimination introduction independent_isectElimination promote_hyp sqequalRule intEquality natural_numberEquality setElimination rename equalityTransitivity equalitySymmetry because_Cache independent_pairEquality lambdaEquality dependent_functionElimination voidElimination applyEquality setEquality lambdaFormation independent_functionElimination isect_memberEquality voidEquality axiomEquality

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[g:\mBbbN{}\msupplus{}].  \mforall{}[xs,L:\mBbbZ{}  List].    uiff(0  \mleq{}  [a  /  g  *  L]  \mcdot{}  [1  /  xs];0  \mleq{}  [a  \mdiv{}\mdownarrow{}  g  /  L]  \mcdot{}  [1  /  xs])



Date html generated: 2016_05_14-AM-06_57_22
Last ObjectModification: 2015_12_26-PM-01_14_01

Theory : omega


Home Index