Nuprl Lemma : int-ineq-constraint-factor

[a:ℤ]. ∀[g:ℕ+]. ∀[xs,L:ℤ List].  uiff(0 ≤ [1 xs] ⋅ [a L];0 ≤ [1 xs] ⋅ [a ÷↓ L])


Proof




Definitions occuring in Statement :  int-vec-mul: as integer-dot-product: as ⋅ bs cons: [a b] list: List div_floor: a ÷↓ n nat_plus: + uiff: uiff(P;Q) uall: [x:A]. B[x] le: A ≤ B natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] top: Top le: A ≤ B not: ¬A implies:  Q false: False prop: nat_plus: + subtype_rel: A ⊆B int_nzero: -o so_lambda: λ2x.t[x] so_apply: x[s] nequal: a ≠ b ∈  guard: {T}
Lemmas referenced :  one-mul multiply-is-int-iff set_subtype_base list_subtype_base int_subtype_base add-is-int-iff div_reduce_inequality int-dot-mul-right nat_plus_wf list_wf equal_wf less_than_irreflexivity le_weakening less_than_transitivity1 nequal_wf less_than_wf subtype_rel_sets div_floor_wf int-vec-mul_wf cons_wf integer-dot-product_wf le_wf less_than'_wf int_dot_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation sqequalHypSubstitution sqequalRule lemma_by_obid dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis productElimination independent_pairEquality lambdaEquality hypothesisEquality because_Cache isectElimination axiomEquality equalityTransitivity equalitySymmetry natural_numberEquality intEquality setElimination rename applyEquality independent_isectElimination setEquality lambdaFormation independent_functionElimination multiplyEquality baseApply closedConclusion baseClosed

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[g:\mBbbN{}\msupplus{}].  \mforall{}[xs,L:\mBbbZ{}  List].    uiff(0  \mleq{}  [1  /  xs]  \mcdot{}  [a  /  g  *  L];0  \mleq{}  [1  /  xs]  \mcdot{}  [a  \mdiv{}\mdownarrow{}  g  /  L])



Date html generated: 2016_05_14-AM-06_57_19
Last ObjectModification: 2016_01_14-PM-08_44_29

Theory : omega


Home Index