Nuprl Lemma : int-ineq-constraint-factor
∀[a:ℤ]. ∀[g:ℕ+]. ∀[xs,L:ℤ List].  uiff(0 ≤ [1 / xs] ⋅ [a / g * L];0 ≤ [1 / xs] ⋅ [a ÷↓ g / L])
Proof
Definitions occuring in Statement : 
int-vec-mul: a * as
, 
integer-dot-product: as ⋅ bs
, 
cons: [a / b]
, 
list: T List
, 
div_floor: a ÷↓ n
, 
nat_plus: ℕ+
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
top: Top
, 
le: A ≤ B
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
nat_plus: ℕ+
, 
subtype_rel: A ⊆r B
, 
int_nzero: ℤ-o
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nequal: a ≠ b ∈ T 
, 
guard: {T}
Lemmas referenced : 
one-mul, 
multiply-is-int-iff, 
set_subtype_base, 
list_subtype_base, 
int_subtype_base, 
add-is-int-iff, 
div_reduce_inequality, 
int-dot-mul-right, 
nat_plus_wf, 
list_wf, 
equal_wf, 
less_than_irreflexivity, 
le_weakening, 
less_than_transitivity1, 
nequal_wf, 
less_than_wf, 
subtype_rel_sets, 
div_floor_wf, 
int-vec-mul_wf, 
cons_wf, 
integer-dot-product_wf, 
le_wf, 
less_than'_wf, 
int_dot_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
sqequalHypSubstitution, 
sqequalRule, 
lemma_by_obid, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
productElimination, 
independent_pairEquality, 
lambdaEquality, 
hypothesisEquality, 
because_Cache, 
isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
intEquality, 
setElimination, 
rename, 
applyEquality, 
independent_isectElimination, 
setEquality, 
lambdaFormation, 
independent_functionElimination, 
multiplyEquality, 
baseApply, 
closedConclusion, 
baseClosed
Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[g:\mBbbN{}\msupplus{}].  \mforall{}[xs,L:\mBbbZ{}  List].    uiff(0  \mleq{}  [1  /  xs]  \mcdot{}  [a  /  g  *  L];0  \mleq{}  [1  /  xs]  \mcdot{}  [a  \mdiv{}\mdownarrow{}  g  /  L])
Date html generated:
2016_05_14-AM-06_57_19
Last ObjectModification:
2016_01_14-PM-08_44_29
Theory : omega
Home
Index