Nuprl Lemma : div_reduce_inequality
∀[a:ℤ]
  ((∀n:ℕ+. ∀x:ℤ.  uiff(0 ≤ (a + (n * x));0 ≤ ((a ÷↓ n) + x)))
  ∧ (∀n:{...-1}. ∀x:ℤ.  uiff(0 ≤ (a + (n * x));0 ≤ ((a ÷↓ (-n)) + ((-1) * x)))))
Proof
Definitions occuring in Statement : 
div_floor: a ÷↓ n
, 
int_lower: {...i}
, 
nat_plus: ℕ+
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
multiply: n * m
, 
add: n + m
, 
minus: -n
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
int_nzero: ℤ-o
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
false: False
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
top: Top
, 
rev_uimplies: rev_uimplies(P;Q)
, 
ge: i ≥ j 
, 
int_lower: {...i}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
subtract: n - m
, 
less_than': less_than'(a;b)
, 
true: True
, 
prop: ℙ
, 
squash: ↓T
Lemmas referenced : 
le_witness_for_triv, 
istype-int, 
nat_plus_wf, 
int_lower_wf, 
div_floor_bounds, 
subtype_rel_sets, 
less_than_wf, 
nequal_wf, 
istype-less_than, 
less_than_transitivity1, 
le_weakening, 
less_than_irreflexivity, 
int_subtype_base, 
istype-le, 
div_floor_wf, 
decidable__le, 
not-le-2, 
mul_preserves_le, 
nat_plus_subtype_nat, 
istype-void, 
add_functionality_wrt_lt, 
le_reflexive, 
add-associates, 
multiply-is-int-iff, 
set_subtype_base, 
add-is-int-iff, 
mul-distributes, 
mul-commutes, 
one-mul, 
zero-mul, 
add-commutes, 
add-swap, 
mul-distributes-right, 
le_functionality, 
add_functionality_wrt_le, 
int_lower_properties, 
subtract_wf, 
decidable__lt, 
minus-one-mul-top, 
istype-false, 
not-lt-2, 
minus-le, 
condition-implies-le, 
minus-zero, 
add-zero, 
zero-add, 
le-add-cancel-alt, 
minus-one-mul, 
add-mul-special, 
not-equal-2, 
minus-add, 
minus-minus, 
le-add-cancel2, 
uiff_wf, 
squash_wf, 
true_wf, 
le_wf, 
mul-associates, 
mul-swap
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
Error :lambdaEquality_alt, 
dependent_functionElimination, 
hypothesisEquality, 
Error :isect_memberEquality_alt, 
isectElimination, 
extract_by_obid, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
independent_isectElimination, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType, 
Error :functionIsTypeImplies, 
Error :lambdaFormation_alt, 
Error :universeIsType, 
independent_pairFormation, 
minusEquality, 
natural_numberEquality, 
applyEquality, 
intEquality, 
because_Cache, 
closedConclusion, 
setElimination, 
rename, 
Error :setIsType, 
independent_functionElimination, 
voidElimination, 
Error :equalityIsType4, 
baseClosed, 
addEquality, 
multiplyEquality, 
unionElimination, 
baseApply, 
Error :dependent_set_memberEquality_alt, 
Error :inlFormation_alt, 
Error :inrFormation_alt, 
hyp_replacement, 
imageElimination, 
universeEquality, 
imageMemberEquality
Latex:
\mforall{}[a:\mBbbZ{}]
    ((\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}x:\mBbbZ{}.    uiff(0  \mleq{}  (a  +  (n  *  x));0  \mleq{}  ((a  \mdiv{}\mdownarrow{}  n)  +  x)))
    \mwedge{}  (\mforall{}n:\{...-1\}.  \mforall{}x:\mBbbZ{}.    uiff(0  \mleq{}  (a  +  (n  *  x));0  \mleq{}  ((a  \mdiv{}\mdownarrow{}  (-n))  +  ((-1)  *  x)))))
Date html generated:
2019_06_20-AM-11_25_54
Last ObjectModification:
2018_10_27-AM-11_46_24
Theory : arithmetic
Home
Index