Nuprl Lemma : div_reduce_inequality

[a:ℤ]
  ((∀n:ℕ+. ∀x:ℤ.  uiff(0 ≤ (a (n x));0 ≤ ((a ÷↓ n) x)))
  ∧ (∀n:{...-1}. ∀x:ℤ.  uiff(0 ≤ (a (n x));0 ≤ ((a ÷↓ (-n)) ((-1) x)))))


Proof




Definitions occuring in Statement :  div_floor: a ÷↓ n int_lower: {...i} nat_plus: + uiff: uiff(P;Q) uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] and: P ∧ Q multiply: m add: m minus: -n natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q all: x:A. B[x] uiff: uiff(P;Q) uimplies: supposing a le: A ≤ B cand: c∧ B subtype_rel: A ⊆B nat_plus: + int_nzero: -o so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q nequal: a ≠ b ∈  not: ¬A false: False guard: {T} decidable: Dec(P) or: P ∨ Q top: Top rev_uimplies: rev_uimplies(P;Q) ge: i ≥  int_lower: {...i} iff: ⇐⇒ Q rev_implies:  Q subtract: m less_than': less_than'(a;b) true: True prop: squash: T
Lemmas referenced :  le_witness_for_triv istype-int nat_plus_wf int_lower_wf div_floor_bounds subtype_rel_sets less_than_wf nequal_wf istype-less_than less_than_transitivity1 le_weakening less_than_irreflexivity int_subtype_base istype-le div_floor_wf decidable__le not-le-2 mul_preserves_le nat_plus_subtype_nat istype-void add_functionality_wrt_lt le_reflexive add-associates multiply-is-int-iff set_subtype_base add-is-int-iff mul-distributes mul-commutes one-mul zero-mul add-commutes add-swap mul-distributes-right le_functionality add_functionality_wrt_le int_lower_properties subtract_wf decidable__lt minus-one-mul-top istype-false not-lt-2 minus-le condition-implies-le minus-zero add-zero zero-add le-add-cancel-alt minus-one-mul add-mul-special not-equal-2 minus-add minus-minus le-add-cancel2 uiff_wf squash_wf true_wf le_wf mul-associates mul-swap
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality Error :lambdaEquality_alt,  dependent_functionElimination hypothesisEquality Error :isect_memberEquality_alt,  isectElimination extract_by_obid equalityTransitivity hypothesis equalitySymmetry independent_isectElimination Error :isectIsTypeImplies,  Error :inhabitedIsType,  Error :functionIsTypeImplies,  Error :lambdaFormation_alt,  Error :universeIsType,  independent_pairFormation minusEquality natural_numberEquality applyEquality intEquality because_Cache closedConclusion setElimination rename Error :setIsType,  independent_functionElimination voidElimination Error :equalityIsType4,  baseClosed addEquality multiplyEquality unionElimination baseApply Error :dependent_set_memberEquality_alt,  Error :inlFormation_alt,  Error :inrFormation_alt,  hyp_replacement imageElimination universeEquality imageMemberEquality

Latex:
\mforall{}[a:\mBbbZ{}]
    ((\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}x:\mBbbZ{}.    uiff(0  \mleq{}  (a  +  (n  *  x));0  \mleq{}  ((a  \mdiv{}\mdownarrow{}  n)  +  x)))
    \mwedge{}  (\mforall{}n:\{...-1\}.  \mforall{}x:\mBbbZ{}.    uiff(0  \mleq{}  (a  +  (n  *  x));0  \mleq{}  ((a  \mdiv{}\mdownarrow{}  (-n))  +  ((-1)  *  x)))))



Date html generated: 2019_06_20-AM-11_25_54
Last ObjectModification: 2018_10_27-AM-11_46_24

Theory : arithmetic


Home Index