Nuprl Lemma : div_floor_bounds

[a:ℤ]. ∀[n:ℤ-o].
  ((((a ÷↓ n) n) ≤ a) ∧ a < ((a ÷↓ n) 1) supposing 0 < n
  ∧ ((a ÷↓ n) 1) n < a ∧ (a ≤ ((a ÷↓ n) n)) supposing n < 0)


Proof




Definitions occuring in Statement :  div_floor: a ÷↓ n int_nzero: -o less_than: a < b uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B and: P ∧ Q multiply: m add: m natural_number: $n int:
Definitions unfolded in proof :  div_floor: a ÷↓ n uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a int_nzero: -o nequal: a ≠ b ∈  not: ¬A implies:  Q false: False prop: all: x:A. B[x] sq_type: SQType(T) guard: {T} and: P ∧ Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T cand: c∧ B bfalse: ff exists: x:A. B[x] or: P ∨ Q bnot: ¬bb ifthenelse: if then else fi  assert: b iff: ⇐⇒ Q rev_implies:  Q le: A ≤ B subtype_rel: A ⊆B nat: has-value: (a)↓ int_lower: {...i} gt: i > j subtract: m so_lambda: λ2x.t[x] so_apply: x[s] decidable: Dec(P)
Lemmas referenced :  value-type-has-value int-value-type equal_wf div_rem_sum rem_bounds_z subtype_base_sq int_subtype_base lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf less_than_transitivity2 le_weakening2 less_than_irreflexivity eqff_to_assert bool_cases_sqequal bool_subtype_base iff_transitivity assert_wf bnot_wf not_wf iff_weakening_uiff assert_of_bnot less_than'_wf subtract_wf member-less_than equal-wf-base-T absval_wf nat_wf div_floor_wf int_nzero_wf squash_wf true_wf absval_neg le_wf absval_pos not-gt-2 add_functionality_wrt_lt le_reflexive minus-one-mul-top add-associates minus-one-mul add-swap add-mul-special zero-mul zero-add mul-commutes add-commutes mul-distributes-right one-mul not-lt-2 add_functionality_wrt_le add-is-int-iff set_subtype_base nequal_wf multiply-is-int-iff decidable__le false_wf not-le-2 less-iff-le condition-implies-le minus-add minus-zero le-add-cancel2 add-zero two-mul decidable__lt le-add-cancel-alt mul-associates le-add-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin intEquality independent_isectElimination hypothesis remainderEquality hypothesisEquality setElimination rename because_Cache lambdaFormation independent_functionElimination voidElimination natural_numberEquality divideEquality instantiate cumulativity dependent_functionElimination equalityTransitivity equalitySymmetry independent_pairFormation isect_memberFormation unionElimination equalityElimination productElimination sqequalRule lessCases axiomSqEquality isect_memberEquality voidEquality imageMemberEquality baseClosed imageElimination dependent_pairFormation promote_hyp impliesFunctionality independent_pairEquality lambdaEquality addEquality multiplyEquality axiomEquality applyEquality callbyvalueReduce addLevel hyp_replacement dependent_set_memberEquality levelHypothesis minusEquality baseApply closedConclusion

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n:\mBbbZ{}\msupminus{}\msupzero{}].
    ((((a  \mdiv{}\mdownarrow{}  n)  *  n)  \mleq{}  a)  \mwedge{}  a  <  ((a  \mdiv{}\mdownarrow{}  n)  +  1)  *  n  supposing  0  <  n
    \mwedge{}  ((a  \mdiv{}\mdownarrow{}  n)  +  1)  *  n  <  a  \mwedge{}  (a  \mleq{}  ((a  \mdiv{}\mdownarrow{}  n)  *  n))  supposing  n  <  0)



Date html generated: 2019_06_20-AM-11_25_49
Last ObjectModification: 2018_08_20-PM-09_28_54

Theory : arithmetic


Home Index