Nuprl Lemma : div_floor_bounds
∀[a:ℤ]. ∀[n:ℤ-o].
  ((((a ÷↓ n) * n) ≤ a) ∧ a < ((a ÷↓ n) + 1) * n supposing 0 < n
  ∧ ((a ÷↓ n) + 1) * n < a ∧ (a ≤ ((a ÷↓ n) * n)) supposing n < 0)
Proof
Definitions occuring in Statement : 
div_floor: a ÷↓ n
, 
int_nzero: ℤ-o
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
div_floor: a ÷↓ n
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
sq_type: SQType(T)
, 
guard: {T}
, 
and: P ∧ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
top: Top
, 
true: True
, 
squash: ↓T
, 
cand: A c∧ B
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
le: A ≤ B
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
has-value: (a)↓
, 
int_lower: {...i}
, 
gt: i > j
, 
subtract: n - m
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
decidable: Dec(P)
Lemmas referenced : 
value-type-has-value, 
int-value-type, 
equal_wf, 
div_rem_sum, 
rem_bounds_z, 
subtype_base_sq, 
int_subtype_base, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
less_than_wf, 
less_than_transitivity2, 
le_weakening2, 
less_than_irreflexivity, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
iff_transitivity, 
assert_wf, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
assert_of_bnot, 
less_than'_wf, 
subtract_wf, 
member-less_than, 
equal-wf-base-T, 
absval_wf, 
nat_wf, 
div_floor_wf, 
int_nzero_wf, 
squash_wf, 
true_wf, 
absval_neg, 
le_wf, 
absval_pos, 
not-gt-2, 
add_functionality_wrt_lt, 
le_reflexive, 
minus-one-mul-top, 
add-associates, 
minus-one-mul, 
add-swap, 
add-mul-special, 
zero-mul, 
zero-add, 
mul-commutes, 
add-commutes, 
mul-distributes-right, 
one-mul, 
not-lt-2, 
add_functionality_wrt_le, 
add-is-int-iff, 
set_subtype_base, 
nequal_wf, 
multiply-is-int-iff, 
decidable__le, 
false_wf, 
not-le-2, 
less-iff-le, 
condition-implies-le, 
minus-add, 
minus-zero, 
le-add-cancel2, 
add-zero, 
two-mul, 
decidable__lt, 
le-add-cancel-alt, 
mul-associates, 
le-add-cancel
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
independent_isectElimination, 
hypothesis, 
remainderEquality, 
hypothesisEquality, 
setElimination, 
rename, 
because_Cache, 
lambdaFormation, 
independent_functionElimination, 
voidElimination, 
natural_numberEquality, 
divideEquality, 
instantiate, 
cumulativity, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation, 
isect_memberFormation, 
unionElimination, 
equalityElimination, 
productElimination, 
sqequalRule, 
lessCases, 
axiomSqEquality, 
isect_memberEquality, 
voidEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_pairFormation, 
promote_hyp, 
impliesFunctionality, 
independent_pairEquality, 
lambdaEquality, 
addEquality, 
multiplyEquality, 
axiomEquality, 
applyEquality, 
callbyvalueReduce, 
addLevel, 
hyp_replacement, 
dependent_set_memberEquality, 
levelHypothesis, 
minusEquality, 
baseApply, 
closedConclusion
Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n:\mBbbZ{}\msupminus{}\msupzero{}].
    ((((a  \mdiv{}\mdownarrow{}  n)  *  n)  \mleq{}  a)  \mwedge{}  a  <  ((a  \mdiv{}\mdownarrow{}  n)  +  1)  *  n  supposing  0  <  n
    \mwedge{}  ((a  \mdiv{}\mdownarrow{}  n)  +  1)  *  n  <  a  \mwedge{}  (a  \mleq{}  ((a  \mdiv{}\mdownarrow{}  n)  *  n))  supposing  n  <  0)
Date html generated:
2019_06_20-AM-11_25_49
Last ObjectModification:
2018_08_20-PM-09_28_54
Theory : arithmetic
Home
Index