Nuprl Lemma : rem_bounds_z

[a:ℤ]. ∀[b:ℤ-o].  |a rem b| < |b|


Proof




Definitions occuring in Statement :  absval: |i| int_nzero: -o less_than: a < b uall: [x:A]. B[x] remainder: rem m int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] int_nzero: -o nequal: a ≠ b ∈  not: ¬A implies:  Q false: False prop: subtype_rel: A ⊆B nat: uimplies: supposing a
Lemmas referenced :  rem_bounds_absval int_nzero_wf member-less_than absval_wf equal_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis sqequalRule isect_memberEquality isectElimination remainderEquality setElimination rename lambdaFormation independent_functionElimination voidElimination intEquality natural_numberEquality applyEquality because_Cache lambdaEquality independent_isectElimination

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[b:\mBbbZ{}\msupminus{}\msupzero{}].    |a  rem  b|  <  |b|



Date html generated: 2016_05_13-PM-03_36_43
Last ObjectModification: 2015_12_26-AM-09_42_17

Theory : arithmetic


Home Index