Nuprl Lemma : member-gcd-reduce-ineq-constraints
∀n:ℕ+. ∀ineqs,sat:{L:ℤ List| ||L|| = n ∈ ℤ}  List. ∀cc:{L:ℤ List| ||L|| = n ∈ ℤ} .
  ((↑isl(gcd-reduce-ineq-constraints(sat;ineqs))) 
⇒ (cc ∈ sat) 
⇒ (cc ∈ outl(gcd-reduce-ineq-constraints(sat;ineqs))))
Proof
Definitions occuring in Statement : 
gcd-reduce-ineq-constraints: gcd-reduce-ineq-constraints(sat;LL)
, 
l_member: (x ∈ l)
, 
listp: A List+
, 
length: ||as||
, 
list: T List
, 
nat_plus: ℕ+
, 
outl: outl(x)
, 
assert: ↑b
, 
isl: isl(x)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
nat_plus: ℕ+
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
listp: A List+
, 
and: P ∧ Q
, 
less_than: a < b
, 
squash: ↓T
, 
cand: A c∧ B
, 
guard: {T}
, 
isl: isl(x)
, 
outl: outl(x)
, 
not: ¬A
, 
false: False
, 
gcd-reduce-ineq-constraints: gcd-reduce-ineq-constraints(sat;LL)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
or: P ∨ Q
, 
cons: [a / b]
, 
decidable: Dec(P)
, 
nil: []
, 
it: ⋅
, 
bfalse: ff
, 
eager-map: eager-map(f;as)
, 
list_ind: list_ind, 
true: True
, 
top: Top
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
uiff: uiff(P;Q)
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t)
, 
outr: outr(x)
, 
has-value: (a)↓
, 
has-valueall: has-valueall(a)
, 
nat: ℕ
, 
subtract: n - m
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
list_induction, 
list_wf, 
equal-wf-base, 
all_wf, 
list_subtype_base, 
int_subtype_base, 
set_subtype_base, 
less_than_wf, 
istype-int, 
assert_wf, 
gcd-reduce-ineq-constraints_wf, 
subtype_rel_list, 
listp_wf, 
subtype_rel_sets_simple, 
length_wf, 
less_than_transitivity1, 
le_weakening, 
btrue_wf, 
bfalse_wf, 
l_member_wf, 
istype-less_than, 
assert_elim, 
btrue_neq_bfalse, 
accumulate_abort_nil_lemma, 
istype-true, 
istype-assert, 
nat_plus_wf, 
accumulate_abort_cons_lemma, 
list-cases, 
product_subtype_list, 
less_than_irreflexivity, 
length_of_nil_lemma, 
spread_cons_lemma, 
decidable__assert, 
null_wf, 
eager_map_cons_lemma, 
null_cons_lemma, 
null_nil_lemma, 
istype-void, 
eager_map_nil_lemma, 
length_of_cons_lemma, 
cons-listp, 
le-add-cancel, 
zero-add, 
add-commutes, 
add-swap, 
add-associates, 
add_functionality_wrt_le, 
le_antisymmetry_iff, 
not-lt-2, 
istype-false, 
cons_member, 
length-singleton, 
nil_wf, 
cons_wf, 
void-valueall-type, 
int-valueall-type, 
list-valueall-type, 
union-valueall-type, 
valueall-type-has-valueall, 
top_wf, 
it_wf, 
decidable__lt, 
istype-top, 
accumulate_abort-aborted, 
evalall-reduce, 
absval_wf, 
gcd-list_wf, 
length_wf_nat, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
minus-one-mul-top, 
add-zero, 
value-type-has-value, 
int-value-type, 
list-value-type, 
eager-map_wf, 
divide_wfa, 
not-equal-2, 
decidable__le, 
istype-le, 
not-le-2, 
less-iff-le, 
le-add-cancel2, 
nequal_wf, 
div_floor_wf, 
map-length, 
map_wf, 
eager-map-is-map
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
setEquality, 
intEquality, 
hypothesis, 
because_Cache, 
sqequalRule, 
lambdaEquality_alt, 
closedConclusion, 
baseApply, 
baseClosed, 
hypothesisEquality, 
applyEquality, 
independent_isectElimination, 
natural_numberEquality, 
universeIsType, 
setElimination, 
rename, 
functionEquality, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairFormation, 
imageElimination, 
productElimination, 
dependent_functionElimination, 
equalityIstype, 
sqequalBase, 
unionElimination, 
independent_functionElimination, 
dependent_set_memberEquality_alt, 
productIsType, 
applyLambdaEquality, 
voidElimination, 
setIsType, 
Error :memTop, 
functionIsType, 
promote_hyp, 
hypothesis_subsumption, 
callbyvalueReduce, 
sqleReflexivity, 
isect_memberEquality_alt, 
inrFormation_alt, 
addEquality, 
inlEquality_alt, 
voidEquality, 
unionEquality, 
lessCases, 
isect_memberFormation_alt, 
axiomSqEquality, 
isectIsTypeImplies, 
imageMemberEquality, 
minusEquality, 
inlFormation_alt
Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}ineqs,sat:\{L:\mBbbZ{}  List|  ||L||  =  n\}    List.  \mforall{}cc:\{L:\mBbbZ{}  List|  ||L||  =  n\}  .
    ((\muparrow{}isl(gcd-reduce-ineq-constraints(sat;ineqs)))
    {}\mRightarrow{}  (cc  \mmember{}  sat)
    {}\mRightarrow{}  (cc  \mmember{}  outl(gcd-reduce-ineq-constraints(sat;ineqs))))
Date html generated:
2020_05_19-PM-09_38_54
Last ObjectModification:
2020_01_01-AM-10_05_20
Theory : omega
Home
Index