Nuprl Lemma : gcd-reduce-eq-constraints_wf

[LL,sat:ℤ List+ List].  (gcd-reduce-eq-constraints(sat;LL) ∈ ℤ List+ List?)


Proof




Definitions occuring in Statement :  gcd-reduce-eq-constraints: gcd-reduce-eq-constraints(sat;LL) listp: List+ list: List uall: [x:A]. B[x] unit: Unit member: t ∈ T union: left right int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T gcd-reduce-eq-constraints: gcd-reduce-eq-constraints(sat;LL) so_lambda: λ2y.t[x; y] listp: List+ all: x:A. B[x] or: P ∨ Q nil: [] it: less_than: a < b squash: T less_than': less_than'(a;b) false: False and: P ∧ Q cons: [a b] implies:  Q exposed-bfalse: exposed-bfalse bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) uimplies: supposing a bfalse: ff exists: x:A. B[x] sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b not: ¬A nequal: a ≠ b ∈  has-value: (a)↓ nat: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B top: Top true: True int_nzero: -o cand: c∧ B rev_uimplies: rev_uimplies(P;Q) decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtract: m le: A ≤ B prop: so_apply: x[s1;s2]
Lemmas referenced :  accumulate_abort_wf listp_wf list_wf unit_wf2 list-cases length_of_nil_lemma product_subtype_list eq_int_wf eqtt_to_assert assert_of_eq_int cons_wf cons-listp nil_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int it_wf value-type-has-value nat_wf set-value-type le_wf int-value-type absval_wf gcd-list_wf lt_int_wf assert_of_lt_int istype-top istype-void eager_map_cons_lemma remainder_wfa not-equal-2 decidable__le istype-le istype-false not-le-2 less-iff-le condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-associates zero-add add-commutes add_functionality_wrt_le le-add-cancel2 nequal_wf divide_wfa eager-map_wf list-value-type iff_weakening_uiff assert_wf less_than_wf istype-less_than list-valueall-type set-valueall-type length_wf int-valueall-type
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin closedConclusion intEquality hypothesis because_Cache Error :inlEquality_alt,  hypothesisEquality Error :universeIsType,  Error :lambdaEquality_alt,  setElimination rename dependent_functionElimination unionElimination imageElimination productElimination voidElimination promote_hyp hypothesis_subsumption natural_numberEquality Error :inhabitedIsType,  Error :lambdaFormation_alt,  equalityElimination independent_isectElimination int_eqReduceTrueSq equalityTransitivity equalitySymmetry Error :dependent_pairFormation_alt,  Error :equalityIstype,  instantiate cumulativity independent_functionElimination int_eqReduceFalseSq Error :inrEquality_alt,  callbyvalueReduce applyEquality lessCases axiomSqEquality Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  independent_pairFormation imageMemberEquality baseClosed Error :dependent_set_memberEquality_alt,  addEquality Error :inlFormation_alt,  Error :inrFormation_alt,  minusEquality axiomEquality

Latex:
\mforall{}[LL,sat:\mBbbZ{}  List\msupplus{}  List].    (gcd-reduce-eq-constraints(sat;LL)  \mmember{}  \mBbbZ{}  List\msupplus{}  List?)



Date html generated: 2019_06_20-PM-00_48_06
Last ObjectModification: 2019_03_06-PM-09_58_32

Theory : omega


Home Index