Nuprl Lemma : shorter-proof-of-termination-equality

[T:Type]. ∀[x,y:partial(T)].  y ∈ supposing (x)↓ ∧ (x y ∈ partial(T)) supposing value-type(T)


Proof




Definitions occuring in Statement :  partial: partial(T) value-type: value-type(T) has-value: (a)↓ uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a and: P ∧ Q member: t ∈ T cand: c∧ B prop:
Lemmas referenced :  termination-equality-base has-value_wf-partial partial_wf value-type_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  sqequalHypSubstitution productElimination thin pointwiseFunctionalityForEquality hypothesisEquality cut introduction extract_by_obid isectElimination independent_isectElimination hypothesis independent_pairFormation equalityTransitivity sqequalRule Error :productIsType,  Error :universeIsType,  Error :equalityIstype,  Error :inhabitedIsType,  because_Cache instantiate universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x,y:partial(T)].    x  =  y  supposing  (x)\mdownarrow{}  \mwedge{}  (x  =  y)  supposing  value-type(T)



Date html generated: 2019_06_20-PM-00_33_56
Last ObjectModification: 2018_12_22-PM-01_12_25

Theory : partial_1


Home Index