Nuprl Lemma : usquash-equality

[T:ℙ]. ∀[S:Type].  usquash(T) usquash(S) ∈ Type supposing ↓⇐⇒ ↓S


Proof




Definitions occuring in Statement :  usquash: usquash(T) uimplies: supposing a uall: [x:A]. B[x] prop: iff: ⇐⇒ Q squash: T universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q usquash: usquash(T) implies:  Q prop: rev_implies:  Q
Lemmas referenced :  squash_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution productElimination thin hypothesis sqequalRule productIsType functionIsType universeIsType extract_by_obid isectElimination hypothesisEquality because_Cache isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType instantiate universeEquality pertypeEquality independent_functionElimination

Latex:
\mforall{}[T:\mBbbP{}].  \mforall{}[S:Type].    usquash(T)  =  usquash(S)  supposing  \mdownarrow{}T  \mLeftarrow{}{}\mRightarrow{}  \mdownarrow{}S



Date html generated: 2020_05_19-PM-09_35_57
Last ObjectModification: 2020_05_17-PM-06_59_59

Theory : per!type!1


Home Index