Nuprl Lemma : usquash-equality
∀[T:ℙ]. ∀[S:Type].  usquash(T) = usquash(S) ∈ Type supposing ↓T 
⇐⇒ ↓S
Proof
Definitions occuring in Statement : 
usquash: usquash(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
squash: ↓T
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
usquash: usquash(T)
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
squash_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
sqequalRule, 
productIsType, 
functionIsType, 
universeIsType, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
because_Cache, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
universeEquality, 
pertypeEquality, 
independent_functionElimination
Latex:
\mforall{}[T:\mBbbP{}].  \mforall{}[S:Type].    usquash(T)  =  usquash(S)  supposing  \mdownarrow{}T  \mLeftarrow{}{}\mRightarrow{}  \mdownarrow{}S
Date html generated:
2020_05_19-PM-09_35_57
Last ObjectModification:
2020_05_17-PM-06_59_59
Theory : per!type!1
Home
Index