Nuprl Lemma : usquash-implies-squash

[T:ℙ]. (usquash(T)  (↓T))


Proof




Definitions occuring in Statement :  usquash: usquash(T) uall: [x:A]. B[x] prop: squash: T implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q usquash: usquash(T) squash: T prop:
Lemmas referenced :  squash_wf usquash_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt sqequalHypSubstitution pertypeElimination2 sqequalRule thin imageElimination hypothesis imageMemberEquality hypothesisEquality baseClosed universeIsType extract_by_obid isectElimination lambdaEquality_alt dependent_functionElimination functionIsTypeImplies inhabitedIsType universeEquality

Latex:
\mforall{}[T:\mBbbP{}].  (usquash(T)  {}\mRightarrow{}  (\mdownarrow{}T))



Date html generated: 2020_05_19-PM-09_35_57
Last ObjectModification: 2020_05_17-PM-06_58_59

Theory : per!type!1


Home Index