Nuprl Lemma : usquash-implies-squash
∀[T:ℙ]. (usquash(T) 
⇒ (↓T))
Proof
Definitions occuring in Statement : 
usquash: usquash(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
squash: ↓T
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
usquash: usquash(T)
, 
squash: ↓T
, 
prop: ℙ
Lemmas referenced : 
squash_wf, 
usquash_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
pertypeElimination2, 
sqequalRule, 
thin, 
imageElimination, 
hypothesis, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
universeIsType, 
extract_by_obid, 
isectElimination, 
lambdaEquality_alt, 
dependent_functionElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
universeEquality
Latex:
\mforall{}[T:\mBbbP{}].  (usquash(T)  {}\mRightarrow{}  (\mdownarrow{}T))
Date html generated:
2020_05_19-PM-09_35_57
Last ObjectModification:
2020_05_17-PM-06_58_59
Theory : per!type!1
Home
Index