Nuprl Lemma : usquash_wf
∀[T:ℙ]. (usquash(T) ∈ Type)
Proof
Definitions occuring in Statement : 
usquash: usquash(T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
usquash: usquash(T)
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s1;s2]
, 
prop: ℙ
, 
top: Top
Lemmas referenced : 
pertype_wf, 
base_wf, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
lambdaEquality, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
lambdaFormation, 
applyEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:\mBbbP{}].  (usquash(T)  \mmember{}  Type)
Date html generated:
2019_06_20-AM-11_29_52
Last ObjectModification:
2018_09_05-PM-06_39_55
Theory : per!type!1
Home
Index