Nuprl Lemma : usquash_wf

[T:ℙ]. (usquash(T) ∈ Type)


Proof




Definitions occuring in Statement :  usquash: usquash(T) uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T usquash: usquash(T) uimplies: supposing a all: x:A. B[x] implies:  Q so_apply: x[s1;s2] prop: top: Top
Lemmas referenced :  pertype_wf base_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality hypothesisEquality hypothesis independent_isectElimination lambdaFormation applyEquality isect_memberEquality voidElimination voidEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:\mBbbP{}].  (usquash(T)  \mmember{}  Type)



Date html generated: 2019_06_20-AM-11_29_52
Last ObjectModification: 2018_09_05-PM-06_39_55

Theory : per!type!1


Home Index