Nuprl Lemma : pertype_wf
∀[R:Base ⟶ Base ⟶ ℙ]
  (pertype(R) ∈ Type) supposing ((∀x,y:Base.  (R[x;y] 
⇒ R[y;x])) and (∀x,y,z:Base.  (R[x;y] 
⇒ R[y;z] 
⇒ R[x;z])))
Proof
Definitions occuring in Statement : 
pertype: pertype(R)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
all: ∀x:A. B[x]
Lemmas referenced : 
all_wf, 
base_wf, 
subtype_rel_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
thin, 
lambdaEquality, 
functionEquality, 
applyEquality, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
cumulativity, 
universeEquality, 
instantiate, 
pertypeEquality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[R:Base  {}\mrightarrow{}  Base  {}\mrightarrow{}  \mBbbP{}]
    (pertype(R)  \mmember{}  Type)  supposing 
          ((\mforall{}x,y:Base.    (R[x;y]  {}\mRightarrow{}  R[y;x]))  and 
          (\mforall{}x,y,z:Base.    (R[x;y]  {}\mRightarrow{}  R[y;z]  {}\mRightarrow{}  R[x;z])))
Date html generated:
2019_06_20-AM-11_29_51
Last ObjectModification:
2018_08_07-PM-02_29_01
Theory : per!type!1
Home
Index