Nuprl Lemma : equiv-on-quotient

T:Type. ∀R:T ⟶ T ⟶ ℙ.
  (EquivRel(T;x,y.x y)
   (∀Q:(x,y:T//(x y)) ⟶ (x,y:T//(x y)) ⟶ ℙ(EquivRel(x,y:T//(x y);u,v.u v)  EquivRel(T;x,y.x y))))


Proof




Definitions occuring in Statement :  equiv_rel: EquivRel(T;x,y.E[x; y]) quotient: x,y:A//B[x; y] prop: infix_ap: y all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) member: t ∈ T subtype_rel: A ⊆B uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] infix_ap: y so_apply: x[s1;s2] uimplies: supposing a sym: Sym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) prop:
Lemmas referenced :  subtype_quotient equiv_rel_wf quotient_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution independent_pairFormation productElimination thin promote_hyp cut hypothesis dependent_functionElimination hypothesisEquality applyEquality introduction extract_by_obid isectElimination sqequalRule lambdaEquality functionExtensionality cumulativity independent_isectElimination because_Cache functionEquality universeEquality

Latex:
\mforall{}T:Type.  \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.
    (EquivRel(T;x,y.x  R  y)
    {}\mRightarrow{}  (\mforall{}Q:(x,y:T//(x  R  y))  {}\mrightarrow{}  (x,y:T//(x  R  y))  {}\mrightarrow{}  \mBbbP{}
                (EquivRel(x,y:T//(x  R  y);u,v.u  Q  v)  {}\mRightarrow{}  EquivRel(T;x,y.x  Q  y))))



Date html generated: 2016_10_21-AM-09_44_00
Last ObjectModification: 2016_08_08-PM-08_46_13

Theory : quot_1


Home Index