Nuprl Lemma : equiv-on-quotient
∀T:Type. ∀R:T ⟶ T ⟶ ℙ.
  (EquivRel(T;x,y.x R y)
  
⇒ (∀Q:(x,y:T//(x R y)) ⟶ (x,y:T//(x R y)) ⟶ ℙ. (EquivRel(x,y:T//(x R y);u,v.u Q v) 
⇒ EquivRel(T;x,y.x Q y))))
Proof
Definitions occuring in Statement : 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
quotient: x,y:A//B[x; y]
, 
prop: ℙ
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
refl: Refl(T;x,y.E[x; y])
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
infix_ap: x f y
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
sym: Sym(T;x,y.E[x; y])
, 
trans: Trans(T;x,y.E[x; y])
, 
prop: ℙ
Lemmas referenced : 
subtype_quotient, 
equiv_rel_wf, 
quotient_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
independent_pairFormation, 
productElimination, 
thin, 
promote_hyp, 
cut, 
hypothesis, 
dependent_functionElimination, 
hypothesisEquality, 
applyEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
functionExtensionality, 
cumulativity, 
independent_isectElimination, 
because_Cache, 
functionEquality, 
universeEquality
Latex:
\mforall{}T:Type.  \mforall{}R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}.
    (EquivRel(T;x,y.x  R  y)
    {}\mRightarrow{}  (\mforall{}Q:(x,y:T//(x  R  y))  {}\mrightarrow{}  (x,y:T//(x  R  y))  {}\mrightarrow{}  \mBbbP{}
                (EquivRel(x,y:T//(x  R  y);u,v.u  Q  v)  {}\mRightarrow{}  EquivRel(T;x,y.x  Q  y))))
Date html generated:
2016_10_21-AM-09_44_00
Last ObjectModification:
2016_08_08-PM-08_46_13
Theory : quot_1
Home
Index