Nuprl Lemma : fun-equiv-rel

[X,A:Type]. ∀[E:A ⟶ A ⟶ ℙ].  (EquivRel(A;a,b.E[a;b])  EquivRel(X ⟶ A;f,g.fun-equiv(X;a,b.E[a;b];f;g)))


Proof




Definitions occuring in Statement :  fun-equiv: fun-equiv(X;a,b.E[a; b];f;g) equiv_rel: EquivRel(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q fun-equiv: fun-equiv(X;a,b.E[a; b];f;g) refl: Refl(T;x,y.E[x; y]) all: x:A. B[x] member: t ∈ T cand: c∧ B sym: Sym(T;x,y.E[x; y]) prop: so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_apply: x[s] trans: Trans(T;x,y.E[x; y]) so_lambda: λ2y.t[x; y] guard: {T}
Lemmas referenced :  all_wf equiv_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation sqequalRule hypothesisEquality functionEquality cut because_Cache lemma_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality applyEquality hypothesis productElimination dependent_functionElimination independent_functionElimination cumulativity universeEquality

Latex:
\mforall{}[X,A:Type].  \mforall{}[E:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    (EquivRel(A;a,b.E[a;b])  {}\mRightarrow{}  EquivRel(X  {}\mrightarrow{}  A;f,g.fun-equiv(X;a,b.E[a;b];f;g)))



Date html generated: 2016_05_14-AM-06_09_09
Last ObjectModification: 2015_12_26-AM-11_48_14

Theory : quot_1


Home Index