Nuprl Lemma : fun-equiv-rel
∀[X,A:Type]. ∀[E:A ⟶ A ⟶ ℙ].  (EquivRel(A;a,b.E[a;b]) 
⇒ EquivRel(X ⟶ A;f,g.fun-equiv(X;a,b.E[a;b];f;g)))
Proof
Definitions occuring in Statement : 
fun-equiv: fun-equiv(X;a,b.E[a; b];f;g)
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
fun-equiv: fun-equiv(X;a,b.E[a; b];f;g)
, 
refl: Refl(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
cand: A c∧ B
, 
sym: Sym(T;x,y.E[x; y])
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
trans: Trans(T;x,y.E[x; y])
, 
so_lambda: λ2x y.t[x; y]
, 
guard: {T}
Lemmas referenced : 
all_wf, 
equiv_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
sqequalRule, 
hypothesisEquality, 
functionEquality, 
cut, 
because_Cache, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
lambdaEquality, 
applyEquality, 
hypothesis, 
productElimination, 
dependent_functionElimination, 
independent_functionElimination, 
cumulativity, 
universeEquality
Latex:
\mforall{}[X,A:Type].  \mforall{}[E:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    (EquivRel(A;a,b.E[a;b])  {}\mRightarrow{}  EquivRel(X  {}\mrightarrow{}  A;f,g.fun-equiv(X;a,b.E[a;b];f;g)))
Date html generated:
2016_05_14-AM-06_09_09
Last ObjectModification:
2015_12_26-AM-11_48_14
Theory : quot_1
Home
Index