Nuprl Lemma : qsquash_wf
∀[T:Type]. (⇃T ∈ Type)
Proof
Definitions occuring in Statement : 
qsquash: ⇃T
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
qsquash: ⇃T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
Lemmas referenced : 
quotient_wf, 
true_wf, 
equiv_rel_true
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[T:Type].  (\00D9T  \mmember{}  Type)
Date html generated:
2016_05_14-AM-06_09_05
Last ObjectModification:
2015_12_26-AM-11_48_10
Theory : quot_1
Home
Index