Nuprl Lemma : qsquash_wf

[T:Type]. (⇃T ∈ Type)


Proof




Definitions occuring in Statement :  qsquash: T uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T qsquash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a
Lemmas referenced :  quotient_wf true_wf equiv_rel_true
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality lambdaEquality hypothesis because_Cache independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  (\00D9T  \mmember{}  Type)



Date html generated: 2016_05_14-AM-06_09_05
Last ObjectModification: 2015_12_26-AM-11_48_10

Theory : quot_1


Home Index