Nuprl Lemma : quotient-bind-ext

A,B:Type. ∀a:⇃(A). ∀f:A ⟶ ⇃(B).  (f a ∈ ⇃(B))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] all: x:A. B[x] true: True member: t ∈ T apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a quotient: x,y:A//B[x; y] and: P ∧ Q prop: implies:  Q cand: c∧ B
Lemmas referenced :  quotient_wf true_wf equiv_rel_true istype-universe quotient-member-eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut sqequalHypSubstitution hypothesis Error :functionIsType,  Error :universeIsType,  hypothesisEquality introduction extract_by_obid isectElimination thin sqequalRule Error :lambdaEquality_alt,  Error :inhabitedIsType,  independent_isectElimination instantiate universeEquality pointwiseFunctionalityForEquality pertypeElimination productElimination Error :productIsType,  Error :equalityIstype,  sqequalBase equalitySymmetry because_Cache equalityTransitivity applyEquality dependent_functionElimination independent_functionElimination baseApply closedConclusion baseClosed

Latex:
\mforall{}A,B:Type.  \mforall{}a:\00D9(A).  \mforall{}f:A  {}\mrightarrow{}  \00D9(B).    (f  a  \mmember{}  \00D9(B))



Date html generated: 2019_06_20-PM-00_32_35
Last ObjectModification: 2018_11_24-PM-10_16_15

Theory : quot_1


Home Index