Nuprl Lemma : quotient-bind-ext
∀A,B:Type. ∀a:⇃(A). ∀f:A ⟶ ⇃(B).  (f a ∈ ⇃(B))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y]
, 
all: ∀x:A. B[x]
, 
true: True
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
cand: A c∧ B
Lemmas referenced : 
quotient_wf, 
true_wf, 
equiv_rel_true, 
istype-universe, 
quotient-member-eq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
Error :functionIsType, 
Error :universeIsType, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
sqequalRule, 
Error :lambdaEquality_alt, 
Error :inhabitedIsType, 
independent_isectElimination, 
instantiate, 
universeEquality, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
productElimination, 
Error :productIsType, 
Error :equalityIstype, 
sqequalBase, 
equalitySymmetry, 
because_Cache, 
equalityTransitivity, 
applyEquality, 
dependent_functionElimination, 
independent_functionElimination, 
baseApply, 
closedConclusion, 
baseClosed
Latex:
\mforall{}A,B:Type.  \mforall{}a:\00D9(A).  \mforall{}f:A  {}\mrightarrow{}  \00D9(B).    (f  a  \mmember{}  \00D9(B))
Date html generated:
2019_06_20-PM-00_32_35
Last ObjectModification:
2018_11_24-PM-10_16_15
Theory : quot_1
Home
Index