Nuprl Lemma : quotient-bind
∀A,B:Type.  (⇃(A) 
⇒ (A 
⇒ ⇃(B)) 
⇒ ⇃(B))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
true: True
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
guard: {T}
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
Lemmas referenced : 
equiv_rel_true, 
true_wf, 
quotient_wf, 
implies-quotient-true2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
functionEquality, 
cumulativity, 
sqequalRule, 
lambdaEquality, 
because_Cache, 
independent_isectElimination, 
universeEquality
Latex:
\mforall{}A,B:Type.    (\00D9(A)  {}\mRightarrow{}  (A  {}\mRightarrow{}  \00D9(B))  {}\mRightarrow{}  \00D9(B))
Date html generated:
2016_05_14-AM-06_08_42
Last ObjectModification:
2016_05_13-AM-03_17_50
Theory : quot_1
Home
Index