Nuprl Lemma : quotient-bind

A,B:Type.  (⇃(A)  (A  ⇃(B))  ⇃(B))


Proof




Definitions occuring in Statement :  quotient: x,y:A//B[x; y] all: x:A. B[x] implies:  Q true: True universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T prop: guard: {T} so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a
Lemmas referenced :  equiv_rel_true true_wf quotient_wf implies-quotient-true2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis functionEquality cumulativity sqequalRule lambdaEquality because_Cache independent_isectElimination universeEquality

Latex:
\mforall{}A,B:Type.    (\00D9(A)  {}\mRightarrow{}  (A  {}\mRightarrow{}  \00D9(B))  {}\mRightarrow{}  \00D9(B))



Date html generated: 2016_05_14-AM-06_08_42
Last ObjectModification: 2016_05_13-AM-03_17_50

Theory : quot_1


Home Index