Nuprl Lemma : quotient_qinc

[T:Type]. ∀[E:T ⟶ T ⟶ ℙ].  T ⊆(x,y:T//E[x;y]) supposing EquivRel(T;x,y.E[x;y])


Proof




Definitions occuring in Statement :  equiv_rel: EquivRel(T;x,y.E[x; y]) quotient: x,y:A//B[x; y] uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] prop: so_apply: x[s1;s2] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] subtype_rel: A ⊆B prop:
Lemmas referenced :  subtype_quotient equiv_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality independent_isectElimination hypothesis axiomEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[E:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    T  \msubseteq{}r  (x,y:T//E[x;y])  supposing  EquivRel(T;x,y.E[x;y])



Date html generated: 2019_06_20-PM-00_32_08
Last ObjectModification: 2018_09_17-PM-07_02_00

Theory : quot_1


Home Index