Nuprl Lemma : truncate-map_wf
∀[X,Q:Type].  ∀f:X ⟶ ⇃(Q). (|f| ∈ ⇃(X) ⟶ ⇃(Q))
Proof
Definitions occuring in Statement : 
truncate-map: |f|
, 
quotient: x,y:A//B[x; y]
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
true: True
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
true: True
, 
truncate-map: |f|
Lemmas referenced : 
quotient_wf, 
true_wf, 
equiv_rel_true, 
istype-universe, 
half-squash-equality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
Error :lambdaFormation_alt, 
functionExtensionality, 
pointwiseFunctionalityForEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
Error :lambdaEquality_alt, 
hypothesis, 
Error :inhabitedIsType, 
Error :universeIsType, 
independent_isectElimination, 
pertypeElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
rename, 
Error :equalityIsType1, 
dependent_functionElimination, 
independent_functionElimination, 
natural_numberEquality, 
Error :productIsType, 
Error :equalityIsType4, 
because_Cache, 
Error :functionIsType, 
axiomEquality, 
Error :functionIsTypeImplies, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
instantiate, 
universeEquality, 
applyEquality
Latex:
\mforall{}[X,Q:Type].    \mforall{}f:X  {}\mrightarrow{}  \00D9(Q).  (|f|  \mmember{}  \00D9(X)  {}\mrightarrow{}  \00D9(Q))
Date html generated:
2019_06_20-PM-00_32_50
Last ObjectModification:
2018_11_16-AM-11_47_43
Theory : quot_1
Home
Index