Nuprl Lemma : truncate-map_wf

[X,Q:Type].  ∀f:X ⟶ ⇃(Q). (|f| ∈ ⇃(X) ⟶ ⇃(Q))


Proof




Definitions occuring in Statement :  truncate-map: |f| quotient: x,y:A//B[x; y] uall: [x:A]. B[x] all: x:A. B[x] true: True member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a quotient: x,y:A//B[x; y] and: P ∧ Q implies:  Q prop: true: True truncate-map: |f|
Lemmas referenced :  quotient_wf true_wf equiv_rel_true istype-universe half-squash-equality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut Error :lambdaFormation_alt,  functionExtensionality pointwiseFunctionalityForEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule Error :lambdaEquality_alt,  hypothesis Error :inhabitedIsType,  Error :universeIsType,  independent_isectElimination pertypeElimination productElimination equalityTransitivity equalitySymmetry rename Error :equalityIsType1,  dependent_functionElimination independent_functionElimination natural_numberEquality Error :productIsType,  Error :equalityIsType4,  because_Cache Error :functionIsType,  axiomEquality Error :functionIsTypeImplies,  Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  instantiate universeEquality applyEquality

Latex:
\mforall{}[X,Q:Type].    \mforall{}f:X  {}\mrightarrow{}  \00D9(Q).  (|f|  \mmember{}  \00D9(X)  {}\mrightarrow{}  \00D9(Q))



Date html generated: 2019_06_20-PM-00_32_50
Last ObjectModification: 2018_11_16-AM-11_47_43

Theory : quot_1


Home Index