Nuprl Lemma : greatest-lower-bound-com
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  ∀[a,b,c,d:T].
    (c = d ∈ T) supposing (greatest-lower-bound(T;x,y.R[x;y];a;b;c) and greatest-lower-bound(T;x,y.R[x;y];b;a;d)) 
  supposing Order(T;x,y.R[x;y])
Proof
Definitions occuring in Statement : 
greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c)
, 
order: Order(T;x,y.R[x; y])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
guard: {T}
, 
greatest-lower-bound: greatest-lower-bound(T;x,y.R[x; y];a;b;c)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
order: Order(T;x,y.R[x; y])
, 
anti_sym: AntiSym(T;x,y.R[x; y])
Lemmas referenced : 
greatest-lower-bound_wf, 
order_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality, 
productElimination, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}[a,b,c,d:T].
        (c  =  d)  supposing 
              (greatest-lower-bound(T;x,y.R[x;y];a;b;c)  and 
              greatest-lower-bound(T;x,y.R[x;y];b;a;d)) 
    supposing  Order(T;x,y.R[x;y])
Date html generated:
2016_05_13-PM-04_18_30
Last ObjectModification:
2015_12_26-AM-11_27_35
Theory : rel_1
Home
Index