Nuprl Lemma : member-eq-is-equiv

[A,B:Type].  EquivRel(A;x,y.(x ∈ B) (y ∈ B) ∈ Type) supposing respects-equality(A;B)


Proof




Definitions occuring in Statement :  equiv_rel: EquivRel(T;x,y.E[x; y]) uimplies: supposing a respects-equality: respects-equality(S;T) uall: [x:A]. B[x] member: t ∈ T universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) all: x:A. B[x] sym: Sym(T;x,y.E[x; y]) implies:  Q trans: Trans(T;x,y.E[x; y]) prop:
Lemmas referenced :  respects-equality_wf istype-universe equal-wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality Error :lambdaEquality_alt,  dependent_functionElimination hypothesisEquality axiomEquality hypothesis Error :functionIsTypeImplies,  Error :inhabitedIsType,  Error :universeIsType,  extract_by_obid isectElimination Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  instantiate universeEquality independent_pairFormation Error :lambdaFormation_alt,  because_Cache equalitySymmetry Error :equalityIstype,  equalityTransitivity independent_functionElimination

Latex:
\mforall{}[A,B:Type].    EquivRel(A;x,y.(x  \mmember{}  B)  =  (y  \mmember{}  B))  supposing  respects-equality(A;B)



Date html generated: 2019_06_20-PM-00_30_12
Last ObjectModification: 2018_11_25-PM-06_18_55

Theory : rel_1


Home Index