Nuprl Lemma : uequiv_rel_iff
UniformEquivRel(ℙ;A,B.A ⇐⇒ B)
Proof
Definitions occuring in Statement : 
uequiv_rel: UniformEquivRel(T;x,y.E[x; y]), 
prop: ℙ, 
iff: P ⇐⇒ Q
Definitions unfolded in proof : 
uequiv_rel: UniformEquivRel(T;x,y.E[x; y]), 
utrans: UniformlyTrans(T;x,y.E[x; y]), 
usym: UniformlySym(T;x,y.E[x; y]), 
urefl: UniformlyRefl(T;x,y.E[x; y]), 
and: P ∧ Q, 
cand: A c∧ B, 
uall: ∀[x:A]. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
rev_implies: P ⇐ Q
Lemmas referenced : 
iff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
Error :isect_memberFormation_alt, 
independent_pairFormation, 
lambdaFormation, 
hypothesis, 
hypothesisEquality, 
because_Cache, 
Error :universeIsType, 
universeEquality, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_functionElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
Error :inhabitedIsType
Latex:
UniformEquivRel(\mBbbP{};A,B.A  \mLeftarrow{}{}\mRightarrow{}  B)
Date html generated:
2019_06_20-PM-00_29_03
Last ObjectModification:
2018_09_26-AM-11_56_04
Theory : rel_1
Home
Index