Nuprl Lemma : uequiv_rel_self_functionality
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  (UniformEquivRel(T;x,y.R[x;y]) 
⇒ {∀[a,a',b,b':T].  (R[a;b] 
⇒ R[a';b'] 
⇒ (R[a;a'] 
⇐⇒ R[b;b']))})
Proof
Definitions occuring in Statement : 
uequiv_rel: UniformEquivRel(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s1;s2]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
uequiv_rel: UniformEquivRel(T;x,y.E[x; y])
, 
utrans: UniformlyTrans(T;x,y.E[x; y])
, 
usym: UniformlySym(T;x,y.E[x; y])
, 
urefl: UniformlyRefl(T;x,y.E[x; y])
, 
member: t ∈ T
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x y.t[x; y]
Lemmas referenced : 
uequiv_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
applyEquality, 
hypothesisEquality, 
Error :inhabitedIsType, 
Error :universeIsType, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
lambdaEquality, 
hypothesis, 
Error :functionIsType, 
universeEquality, 
independent_functionElimination, 
because_Cache
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (UniformEquivRel(T;x,y.R[x;y])
    {}\mRightarrow{}  \{\mforall{}[a,a',b,b':T].    (R[a;b]  {}\mRightarrow{}  R[a';b']  {}\mRightarrow{}  (R[a;a']  \mLeftarrow{}{}\mRightarrow{}  R[b;b']))\})
Date html generated:
2019_06_20-PM-00_29_08
Last ObjectModification:
2018_09_26-AM-11_57_50
Theory : rel_1
Home
Index