Nuprl Lemma : uequiv_rel_self_functionality

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  (UniformEquivRel(T;x,y.R[x;y])  {∀[a,a',b,b':T].  (R[a;b]  R[a';b']  (R[a;a'] ⇐⇒ R[b;b']))})


Proof




Definitions occuring in Statement :  uequiv_rel: UniformEquivRel(T;x,y.E[x; y]) uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s1;s2] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q uequiv_rel: UniformEquivRel(T;x,y.E[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) usym: UniformlySym(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) member: t ∈ T prop: so_apply: x[s1;s2] rev_implies:  Q so_lambda: λ2y.t[x; y]
Lemmas referenced :  uequiv_rel_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  lambdaFormation independent_pairFormation sqequalHypSubstitution productElimination thin applyEquality hypothesisEquality Error :inhabitedIsType,  Error :universeIsType,  cut introduction extract_by_obid isectElimination lambdaEquality hypothesis Error :functionIsType,  universeEquality independent_functionElimination because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (UniformEquivRel(T;x,y.R[x;y])
    {}\mRightarrow{}  \{\mforall{}[a,a',b,b':T].    (R[a;b]  {}\mRightarrow{}  R[a';b']  {}\mRightarrow{}  (R[a;a']  \mLeftarrow{}{}\mRightarrow{}  R[b;b']))\})



Date html generated: 2019_06_20-PM-00_29_08
Last ObjectModification: 2018_09_26-AM-11_57_50

Theory : rel_1


Home Index