Nuprl Lemma : as_strong_transitivity

[T:Type]. ∀[P,Q,R:T ⟶ ℙ].  (P as strong as Q   as strong as R   as strong as )


Proof




Definitions occuring in Statement :  as_strong: as strong as  uall: [x:A]. B[x] prop: implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  as_strong: as strong as  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] guard: {T}
Lemmas referenced :  all_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  lambdaFormation applyEquality hypothesisEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality functionEquality hypothesis Error :inhabitedIsType,  Error :functionIsType,  Error :universeIsType,  universeEquality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[P,Q,R:T  {}\mrightarrow{}  \mBbbP{}].    (P  as  strong  as  Q    {}\mRightarrow{}  Q  as  strong  as  R    {}\mRightarrow{}  P  as  strong  as  R  )



Date html generated: 2019_06_20-PM-00_31_37
Last ObjectModification: 2018_09_26-AM-11_46_30

Theory : relations


Home Index