Nuprl Lemma : as_strong_transitivity
∀[T:Type]. ∀[P,Q,R:T ⟶ ℙ].  (P as strong as Q  
⇒ Q as strong as R  
⇒ P as strong as R )
Proof
Definitions occuring in Statement : 
as_strong: P as strong as Q 
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
as_strong: P as strong as Q 
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
Lemmas referenced : 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
applyEquality, 
hypothesisEquality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
lambdaEquality, 
functionEquality, 
hypothesis, 
Error :inhabitedIsType, 
Error :functionIsType, 
Error :universeIsType, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}[P,Q,R:T  {}\mrightarrow{}  \mBbbP{}].    (P  as  strong  as  Q    {}\mRightarrow{}  Q  as  strong  as  R    {}\mRightarrow{}  P  as  strong  as  R  )
Date html generated:
2019_06_20-PM-00_31_37
Last ObjectModification:
2018_09_26-AM-11_46_30
Theory : relations
Home
Index