Nuprl Lemma : predicate_implies_transitivity

[T:Type]. ∀[P1,P2,P3:T ⟶ ℙ].  (P1  P2  P2  P3  P1  P3)


Proof




Definitions occuring in Statement :  predicate_implies: P1  P2 uall: [x:A]. B[x] prop: implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  predicate_implies: P1  P2 uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] guard: {T}
Lemmas referenced :  all_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation applyEquality hypothesisEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin lambdaEquality functionEquality hypothesis cumulativity universeEquality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}[P1,P2,P3:T  {}\mrightarrow{}  \mBbbP{}].    (P1  {}\mRightarrow{}  P2  {}\mRightarrow{}  P2  {}\mRightarrow{}  P3  {}\mRightarrow{}  P1  {}\mRightarrow{}  P3)



Date html generated: 2016_05_14-AM-06_05_53
Last ObjectModification: 2015_12_26-AM-11_32_25

Theory : relations


Home Index