Nuprl Lemma : rel-comp_wf

[A,B,C:Type]. ∀[R1:A ⟶ B ⟶ ℙ]. ∀[R2:B ⟶ C ⟶ ℙ].  ((R1 R2) ∈ A ⟶ C ⟶ ℙ)


Proof




Definitions occuring in Statement :  rel-comp: (R1 R2) uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rel-comp: (R1 R2) prop: exists: x:A. B[x] and: P ∧ Q subtype_rel: A ⊆B
Lemmas referenced :  subtype_rel_self istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule Error :lambdaEquality_alt,  productEquality hypothesisEquality applyEquality hypothesis thin instantiate extract_by_obid sqequalHypSubstitution isectElimination because_Cache Error :universeIsType,  axiomEquality equalityTransitivity equalitySymmetry Error :functionIsType,  universeEquality Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  Error :inhabitedIsType

Latex:
\mforall{}[A,B,C:Type].  \mforall{}[R1:A  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[R2:B  {}\mrightarrow{}  C  {}\mrightarrow{}  \mBbbP{}].    ((R1  o  R2)  \mmember{}  A  {}\mrightarrow{}  C  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2019_06_20-PM-00_31_19
Last ObjectModification: 2019_03_27-PM-00_41_31

Theory : relations


Home Index