Nuprl Lemma : rel-comp_wf
∀[A,B,C:Type]. ∀[R1:A ⟶ B ⟶ ℙ]. ∀[R2:B ⟶ C ⟶ ℙ].  ((R1 o R2) ∈ A ⟶ C ⟶ ℙ)
Proof
Definitions occuring in Statement : 
rel-comp: (R1 o R2)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rel-comp: (R1 o R2)
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
subtype_rel_self, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
Error :lambdaEquality_alt, 
productEquality, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
Error :universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :functionIsType, 
universeEquality, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
Error :inhabitedIsType
Latex:
\mforall{}[A,B,C:Type].  \mforall{}[R1:A  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[R2:B  {}\mrightarrow{}  C  {}\mrightarrow{}  \mBbbP{}].    ((R1  o  R2)  \mmember{}  A  {}\mrightarrow{}  C  {}\mrightarrow{}  \mBbbP{})
Date html generated:
2019_06_20-PM-00_31_19
Last ObjectModification:
2019_03_27-PM-00_41_31
Theory : relations
Home
Index