Nuprl Lemma : rel-restriction_wf

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[P:T ⟶ ℙ].  (R|P ∈ T ⟶ T ⟶ ℙ)


Proof




Definitions occuring in Statement :  rel-restriction: R|P uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  rel-restriction: R|P uall: [x:A]. B[x] member: t ∈ T prop:
Lemmas referenced :  and_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].    (R|P  \mmember{}  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2016_05_14-AM-06_06_02
Last ObjectModification: 2015_12_26-AM-11_32_39

Theory : relations


Home Index