Nuprl Lemma : rel_inverse_wf

[T1,T2:Type]. ∀[R:T1 ⟶ T2 ⟶ ℙ].  (R^-1 ∈ T2 ⟶ T1 ⟶ ℙ)


Proof




Definitions occuring in Statement :  rel_inverse: R^-1 uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rel_inverse: R^-1 infix_ap: y prop:
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule lambdaEquality applyEquality hypothesisEquality sqequalHypSubstitution hypothesis axiomEquality equalityTransitivity equalitySymmetry Error :functionIsType,  Error :universeIsType,  universeEquality isect_memberEquality isectElimination thin functionEquality cumulativity Error :inhabitedIsType,  because_Cache

Latex:
\mforall{}[T1,T2:Type].  \mforall{}[R:T1  {}\mrightarrow{}  T2  {}\mrightarrow{}  \mBbbP{}].    (R\^{}-1  \mmember{}  T2  {}\mrightarrow{}  T1  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2019_06_20-PM-00_30_53
Last ObjectModification: 2018_09_26-PM-00_39_30

Theory : relations


Home Index