Nuprl Lemma : rel_or_wf

[T:Type]. ∀[R1,R2:T ⟶ T ⟶ ℙ].  (R1 ∨ R2 ∈ T ⟶ T ⟶ ℙ)


Proof




Definitions occuring in Statement :  rel_or: R1 ∨ R2 uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rel_or: R1 ∨ R2 infix_ap: y prop:
Lemmas referenced :  or_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule lambdaEquality extract_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  isect_memberEquality functionEquality cumulativity universeEquality Error :functionIsType,  Error :universeIsType,  because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[R1,R2:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (R1  \mvee{}  R2  \mmember{}  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2019_06_20-PM-00_31_05
Last ObjectModification: 2018_09_26-PM-00_39_31

Theory : relations


Home Index