Nuprl Lemma : rel_rev_implies_wf

[T:Type]. ∀[R1,R2:T ⟶ T ⟶ ℙ].  (R1  R2 ∈ ℙ)


Proof




Definitions occuring in Statement :  rel_rev_implies: R1  R2 uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  rel_rev_implies: R1  R2 uall: [x:A]. B[x] member: t ∈ T prop:
Lemmas referenced :  rel_implies_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[R1,R2:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (R1  \mLeftarrow{}{}  R2  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-AM-06_04_46
Last ObjectModification: 2015_12_26-AM-11_33_00

Theory : relations


Home Index