Nuprl Lemma : binrel_le_transitivity

[T:Type]. ∀[Q,R,S:T ⟶ T ⟶ ℙ].  ((Q ≡>{T} R)  (R ≡>{T} S)  (Q ≡>{T} S))


Proof




Definitions occuring in Statement :  binrel_le: E ≡>{T} E' uall: [x:A]. B[x] prop: implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  binrel_le: E ≡>{T} E' uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  all_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination because_Cache applyEquality lemma_by_obid isectElimination lambdaEquality functionEquality cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[Q,R,S:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    ((Q  \mequiv{}>\{T\}  R)  {}\mRightarrow{}  (R  \mequiv{}>\{T\}  S)  {}\mRightarrow{}  (Q  \mequiv{}>\{T\}  S))



Date html generated: 2016_05_14-PM-03_54_54
Last ObjectModification: 2015_12_26-PM-06_55_54

Theory : relations2


Home Index