Step
*
2
2
of Lemma
transitive-closure-cases
1. [A] : Type
2. [R] : A ⟶ A ⟶ ℙ
3. x : A
4. y : A
5. u : a:A × b:A × (R a b)
6. u1 : a:A × b:A × (R a b)
7. v : (a:A × b:A × (R a b)) List
8. [%1] : rel_path(A;[u; [u1 / v]];x;y) ∧ 0 < ||[u; [u1 / v]]||
⊢ (x R y) ∨ (∃z:A. ((x R z) ∧ (z TC(R) y)))
BY
{ (DProds THEN All Reduce) }
1
1. [A] : Type
2. [R] : A ⟶ A ⟶ ℙ
3. x : A
4. y : A
5. a1 : A
6. b1 : A
7. u5 : R a1 b1
8. a : A
9. b : A
10. u4 : R a b
11. v : (a:A × b:A × (R a b)) List
12. [%1] : rel_path(A;[<a1, b1, u5>; [<a, b, u4> / v]];x;y) ∧ 0 < (||v|| + 1) + 1
⊢ (x R y) ∨ (∃z:A. ((x R z) ∧ (z TC(R) y)))
Latex:
Latex:
1. [A] : Type
2. [R] : A {}\mrightarrow{} A {}\mrightarrow{} \mBbbP{}
3. x : A
4. y : A
5. u : a:A \mtimes{} b:A \mtimes{} (R a b)
6. u1 : a:A \mtimes{} b:A \mtimes{} (R a b)
7. v : (a:A \mtimes{} b:A \mtimes{} (R a b)) List
8. [\%1] : rel\_path(A;[u; [u1 / v]];x;y) \mwedge{} 0 < ||[u; [u1 / v]]||
\mvdash{} (x R y) \mvee{} (\mexists{}z:A. ((x R z) \mwedge{} (z TC(R) y)))
By
Latex:
(DProds THEN All Reduce)
Home
Index