Nuprl Lemma : Play_wf
∀[Pos:Type]. ∀[Mv:Pos ⟶ Type].  (Play(Pos;a.Mv[a]) ∈ Type)
Proof
Definitions occuring in Statement : 
Play: Play(Pos;a.Mv[a])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
Play: Play(Pos;a.Mv[a])
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
nat_wf, 
MoveChoice_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
functionEquality, 
lemma_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
cumulativity, 
universeEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[Pos:Type].  \mforall{}[Mv:Pos  {}\mrightarrow{}  Type].    (Play(Pos;a.Mv[a])  \mmember{}  Type)
Date html generated:
2016_05_14-PM-03_56_23
Last ObjectModification:
2015_12_26-PM-05_48_16
Theory : spread
Home
Index