Nuprl Lemma : Play_wf

[Pos:Type]. ∀[Mv:Pos ⟶ Type].  (Play(Pos;a.Mv[a]) ∈ Type)


Proof




Definitions occuring in Statement :  Play: Play(Pos;a.Mv[a]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T Play: Play(Pos;a.Mv[a]) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  nat_wf MoveChoice_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule functionEquality lemma_by_obid hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry cumulativity universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[Pos:Type].  \mforall{}[Mv:Pos  {}\mrightarrow{}  Type].    (Play(Pos;a.Mv[a])  \mmember{}  Type)



Date html generated: 2016_05_14-PM-03_56_23
Last ObjectModification: 2015_12_26-PM-05_48_16

Theory : spread


Home Index