Nuprl Lemma : Spread-family_wf
∀[P,Pos:Type]. ∀[f:Pos ⟶ ℤ]. ∀[Mv:p:ℤ ⟶ P ⟶ P ⟶ Type].  (Spread-family(P;Pos;f;n,p,q.Mv[n;p;q]) ∈ P ⟶ Type)
Proof
Definitions occuring in Statement : 
Spread-family: Spread-family(P;Pos;f;n,p,q.Mv[n; p; q])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2;s3]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
Spread-family: Spread-family(P;Pos;f;n,p,q.Mv[n; p; q])
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
corec-family_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
productEquality, 
functionEquality, 
applyEquality, 
cumulativity, 
universeEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[P,Pos:Type].  \mforall{}[f:Pos  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[Mv:p:\mBbbZ{}  {}\mrightarrow{}  P  {}\mrightarrow{}  P  {}\mrightarrow{}  Type].
    (Spread-family(P;Pos;f;n,p,q.Mv[n;p;q])  \mmember{}  P  {}\mrightarrow{}  Type)
Date html generated:
2016_05_14-PM-03_57_15
Last ObjectModification:
2015_12_26-PM-05_48_12
Theory : spread
Home
Index