Nuprl Lemma : equal-wf
∀[x,y:Base]. ∀[T:Type].  (x = y ∈ T ∈ Type)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
base: Base
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
Lemmas referenced : 
equal-wf-base, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[x,y:Base].  \mforall{}[T:Type].    (x  =  y  \mmember{}  Type)
Date html generated:
2016_05_13-PM-03_19_48
Last ObjectModification:
2015_12_26-AM-09_09_22
Theory : sqequal_1
Home
Index