Nuprl Lemma : equal-wf

[x,y:Base]. ∀[T:Type].  (x y ∈ T ∈ Type)


Proof




Definitions occuring in Statement :  uall: [x:A]. B[x] member: t ∈ T base: Base universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prop:
Lemmas referenced :  equal-wf-base base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[x,y:Base].  \mforall{}[T:Type].    (x  =  y  \mmember{}  Type)



Date html generated: 2016_05_13-PM-03_19_48
Last ObjectModification: 2015_12_26-AM-09_09_22

Theory : sqequal_1


Home Index