Nuprl Lemma : baseof_subtype
∀[T:Type]. (baseof(T) ⊆r T)
Proof
Definitions occuring in Statement : 
baseof: baseof(T)
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
baseof: baseof(T)
Lemmas referenced : 
baseof_wf, 
it_wf, 
unit_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
axiomEquality, 
universeEquality, 
inlEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[T:Type].  (baseof(T)  \msubseteq{}r  T)
Date html generated:
2016_05_13-PM-03_19_32
Last ObjectModification:
2015_12_26-AM-09_07_45
Theory : subtype_0
Home
Index