Nuprl Lemma : baseof_subtype

[T:Type]. (baseof(T) ⊆T)


Proof




Definitions occuring in Statement :  baseof: baseof(T) subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B baseof: baseof(T)
Lemmas referenced :  baseof_wf it_wf unit_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule axiomEquality universeEquality inlEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type].  (baseof(T)  \msubseteq{}r  T)



Date html generated: 2016_05_13-PM-03_19_32
Last ObjectModification: 2015_12_26-AM-09_07_45

Theory : subtype_0


Home Index