Nuprl Lemma : iff_weakening_ext-eq

[A,B:Type].  {A ⇐⇒ B} supposing A ≡ B


Proof




Definitions occuring in Statement :  ext-eq: A ≡ B uimplies: supposing a uall: [x:A]. B[x] guard: {T} iff: ⇐⇒ Q universe: Type
Definitions unfolded in proof :  guard: {T} uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B iff: ⇐⇒ Q implies:  Q rev_implies:  Q prop:
Lemmas referenced :  ext-eq_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation cut introduction sqequalHypSubstitution productElimination thin independent_pairEquality axiomEquality hypothesis rename independent_pairFormation lambdaFormation hypothesisEquality applyEquality extract_by_obid isectElimination cumulativity universeEquality

Latex:
\mforall{}[A,B:Type].    \{A  \mLeftarrow{}{}\mRightarrow{}  B\}  supposing  A  \mequiv{}  B



Date html generated: 2016_10_21-AM-09_36_00
Last ObjectModification: 2016_08_06-PM-05_31_55

Theory : subtype_0


Home Index