Nuprl Lemma : iff_weakening_ext-eq
∀[A,B:Type].  {A 
⇐⇒ B} supposing A ≡ B
Proof
Definitions occuring in Statement : 
ext-eq: A ≡ B
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
Lemmas referenced : 
ext-eq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
cut, 
introduction, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
axiomEquality, 
hypothesis, 
rename, 
independent_pairFormation, 
lambdaFormation, 
hypothesisEquality, 
applyEquality, 
extract_by_obid, 
isectElimination, 
cumulativity, 
universeEquality
Latex:
\mforall{}[A,B:Type].    \{A  \mLeftarrow{}{}\mRightarrow{}  B\}  supposing  A  \mequiv{}  B
Date html generated:
2016_10_21-AM-09_36_00
Last ObjectModification:
2016_08_06-PM-05_31_55
Theory : subtype_0
Home
Index