Nuprl Lemma : isect_subtype_rel

[A:Type]. ∀[B:A ⟶ Type]. ∀[x:A].  ((⋂x:A. B[x]) ⊆B[x])


Proof




Definitions occuring in Statement :  subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_apply: x[s] subtype_rel: A ⊆B
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality isectElimination hypothesisEquality equalityTransitivity equalitySymmetry hypothesis isectEquality applyEquality axiomEquality sqequalHypSubstitution isect_memberEquality thin because_Cache functionEquality cumulativity universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[x:A].    ((\mcap{}x:A.  B[x])  \msubseteq{}r  B[x])



Date html generated: 2016_05_13-PM-03_18_59
Last ObjectModification: 2015_12_26-AM-09_07_59

Theory : subtype_0


Home Index