Nuprl Lemma : isect_subtype_rel
∀[A:Type]. ∀[B:A ⟶ Type]. ∀[x:A].  ((⋂x:A. B[x]) ⊆r B[x])
Proof
Definitions occuring in Statement : 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
isect: ⋂x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
hypothesis, 
isectEquality, 
applyEquality, 
axiomEquality, 
sqequalHypSubstitution, 
isect_memberEquality, 
thin, 
because_Cache, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[x:A].    ((\mcap{}x:A.  B[x])  \msubseteq{}r  B[x])
Date html generated:
2016_05_13-PM-03_18_59
Last ObjectModification:
2015_12_26-AM-09_07_59
Theory : subtype_0
Home
Index