Nuprl Lemma : subtype_rel_image
∀[A,B:Type]. ∀[f:Base].  Image(A,f) ⊆r Image(B,f) supposing A ⊆r B
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
image-type: Image(T,f)
, 
base: Base
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
image-type_wf, 
subtype_rel_wf, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
imageElimination, 
sqequalHypSubstitution, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
applyEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:Base].    Image(A,f)  \msubseteq{}r  Image(B,f)  supposing  A  \msubseteq{}r  B
Date html generated:
2016_05_13-PM-03_18_40
Last ObjectModification:
2015_12_26-AM-09_08_25
Theory : subtype_0
Home
Index