Nuprl Lemma : subtype_rel_image

[A,B:Type]. ∀[f:Base].  Image(A,f) ⊆Image(B,f) supposing A ⊆B


Proof




Definitions occuring in Statement :  uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] image-type: Image(T,f) base: Base universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B
Lemmas referenced :  image-type_wf subtype_rel_wf base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality imageElimination sqequalHypSubstitution hypothesis lemma_by_obid isectElimination thin hypothesisEquality sqequalRule axiomEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality imageMemberEquality applyEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:Base].    Image(A,f)  \msubseteq{}r  Image(B,f)  supposing  A  \msubseteq{}r  B



Date html generated: 2016_05_13-PM-03_18_40
Last ObjectModification: 2015_12_26-AM-09_08_25

Theory : subtype_0


Home Index