Nuprl Lemma : subtype_rel_nested_set
∀[A,B:Type]. ∀[P:B ⟶ ℙ]. ∀[Q:{b:B| P[b]}  ⟶ ℙ].  A ⊆r {b:{b:B| P[b]} | Q[b]}  supposing A ⊆r {b:B| P[b] ∧ Q[b]} 
Proof
Definitions occuring in Statement : 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
subtype_rel_wf, 
subtype_rel_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
axiomEquality, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
setEquality, 
productEquality, 
applyEquality, 
because_Cache, 
dependent_set_memberEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
universeEquality, 
lambdaEquality, 
independent_isectElimination, 
setElimination, 
rename, 
productElimination
Latex:
\mforall{}[A,B:Type].  \mforall{}[P:B  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[Q:\{b:B|  P[b]\}    {}\mrightarrow{}  \mBbbP{}].
    A  \msubseteq{}r  \{b:\{b:B|  P[b]\}  |  Q[b]\}    supposing  A  \msubseteq{}r  \{b:B|  P[b]  \mwedge{}  Q[b]\} 
Date html generated:
2016_05_13-PM-03_18_49
Last ObjectModification:
2015_12_26-AM-09_08_22
Theory : subtype_0
Home
Index