Nuprl Lemma : void-dep-product

[S:Type]. ∀[F:S ⟶ Type].  m:S × (F m) ≡ Void supposing S ≡ Void


Proof




Definitions occuring in Statement :  ext-eq: A ≡ B uimplies: supposing a uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] product: x:A × B[x] void: Void universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B guard: {T} prop:
Lemmas referenced :  ext-eq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin independent_pairFormation lambdaEquality hypothesisEquality applyEquality hypothesis sqequalRule voidElimination productEquality voidEquality independent_pairEquality axiomEquality lemma_by_obid isectElimination isect_memberEquality because_Cache equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality

Latex:
\mforall{}[S:Type].  \mforall{}[F:S  {}\mrightarrow{}  Type].    m:S  \mtimes{}  (F  m)  \mequiv{}  Void  supposing  S  \mequiv{}  Void



Date html generated: 2016_05_13-PM-03_19_18
Last ObjectModification: 2015_12_26-AM-09_08_02

Theory : subtype_0


Home Index