Nuprl Lemma : void-dep-product
∀[S:Type]. ∀[F:S ⟶ Type].  m:S × (F m) ≡ Void supposing S ≡ Void
Proof
Definitions occuring in Statement : 
ext-eq: A ≡ B
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
void: Void
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
prop: ℙ
Lemmas referenced : 
ext-eq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairFormation, 
lambdaEquality, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
voidElimination, 
productEquality, 
voidEquality, 
independent_pairEquality, 
axiomEquality, 
lemma_by_obid, 
isectElimination, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[S:Type].  \mforall{}[F:S  {}\mrightarrow{}  Type].    m:S  \mtimes{}  (F  m)  \mequiv{}  Void  supposing  S  \mequiv{}  Void
Date html generated:
2016_05_13-PM-03_19_18
Last ObjectModification:
2015_12_26-AM-09_08_02
Theory : subtype_0
Home
Index