Nuprl Lemma : void-product

[T,S:Type].  T × S ≡ Void supposing S ≡ Void


Proof




Definitions occuring in Statement :  ext-eq: A ≡ B uimplies: supposing a uall: [x:A]. B[x] product: x:A × B[x] void: Void universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B guard: {T} prop:
Lemmas referenced :  ext-eq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin independent_pairFormation lambdaEquality hypothesisEquality applyEquality hypothesis sqequalRule voidElimination productEquality voidEquality independent_pairEquality axiomEquality lemma_by_obid isectElimination isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T,S:Type].    T  \mtimes{}  S  \mequiv{}  Void  supposing  S  \mequiv{}  Void



Date html generated: 2016_05_13-PM-03_19_16
Last ObjectModification: 2015_12_26-AM-09_08_28

Theory : subtype_0


Home Index