Nuprl Lemma : b-union-base-equality

A:Type. ∀a,b:Base.  ((a b ∈ (Base ⋃ A))  (b ∈ A)  (a b ∈ A))


Proof




Definitions occuring in Statement :  b-union: A ⋃ B all: x:A. B[x] implies:  Q member: t ∈ T base: Base universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q implies:  Q guard: {T}
Lemmas referenced :  strong-subtype-union-base strong-subtype-implies b-union_wf base_wf istype-universe istype-base
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination independent_functionElimination instantiate universeEquality dependent_functionElimination equalityTransitivity equalitySymmetry sqequalRule Error :equalityIstype,  Error :universeIsType,  sqequalBase because_Cache

Latex:
\mforall{}A:Type.  \mforall{}a,b:Base.    ((a  =  b)  {}\mRightarrow{}  (b  \mmember{}  A)  {}\mRightarrow{}  (a  =  b))



Date html generated: 2019_06_20-PM-00_28_06
Last ObjectModification: 2018_12_07-AM-11_43_12

Theory : subtype_1


Home Index